Rapid, Accurate, Ranking of Protein–Ligand Binding Affinities with VM2, the Second-Generation Mining Minima Method

亲缘关系 结合亲和力 最大值和最小值 排名(信息检索) 计算机科学 数据挖掘 计算生物学 配体(生物化学) 化学 人工智能 生物 立体化学 数学 生物化学 数学分析 受体
作者
Michael K. Gilson,Lawrence E. Stewart,Michael J. Potter,Simon P. Webb
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:20 (14): 6328-6340 被引量:1
标识
DOI:10.1021/acs.jctc.4c00407
摘要

The structure-based technologies most widely used to rank the affinities of candidate small molecule drugs for proteins range from faster but less reliable docking methods to slower but more accurate explicit solvent free energy methods. In recent years, we have advanced another technology, which is called mining minima because it "mines" out the main contributions to the chemical potentials of the free and bound molecular species by identifying and characterizing their main local energy minima. The present study provides systematic benchmarks of the accuracy and computational speed of mining minima, as implemented in the VeraChem Mining Minima Generation 2 (VM2) code, across two well-regarded protein-ligand benchmark data sets, for which there are already benchmark data for docking, free energy, and other computational methods. A core result is that VM2's accuracy approaches that of explicit solvent free energy methods at a far lower computational cost. In finer-grained analyses, we also examine the influence of various run settings, such as the treatment of crystallographic water molecules, on the accuracy, and define the costs in time and dollars of representative runs on Amazon Web Services (AWS) compute instances with various CPU and GPU combinations. We also use the benchmark data to determine the importance of VM2's correction from generalized Born to finite-difference Poisson-Boltzmann results for each energy well and find that this correction affords a remarkably consistent improvement in accuracy at a modest computational cost. The present results establish VM2 as a distinctive technology for early-stage drug discovery, which provides a strong combination of efficiency and predictivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饭饭发布了新的文献求助10
2秒前
哇撒发布了新的文献求助30
2秒前
小巧雪碧发布了新的文献求助10
2秒前
3秒前
觅越完成签到,获得积分20
7秒前
7秒前
7秒前
科研通AI2S应助xx采纳,获得10
7秒前
10秒前
14秒前
Lu发布了新的文献求助10
14秒前
饭饭完成签到,获得积分10
15秒前
主公过于清纯完成签到,获得积分10
15秒前
16秒前
18秒前
善学以致用应助ppxx采纳,获得10
19秒前
网易乐发布了新的文献求助10
19秒前
20秒前
21秒前
21秒前
serenity完成签到 ,获得积分10
22秒前
万能图书馆应助cccc采纳,获得10
23秒前
luoluo发布了新的文献求助10
25秒前
Zer发布了新的文献求助10
27秒前
希望天下0贩的0应助zhang采纳,获得10
27秒前
binz完成签到,获得积分10
28秒前
Lu完成签到,获得积分10
29秒前
orixero应助贝肯尼采纳,获得10
31秒前
34秒前
35秒前
善学以致用应助故意的驳采纳,获得10
35秒前
Ava应助啊蛋蛋采纳,获得10
36秒前
36秒前
ding应助学医不要停采纳,获得10
37秒前
37秒前
39秒前
zhang发布了新的文献求助10
39秒前
40秒前
冯大夫发布了新的文献求助10
40秒前
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352973
求助须知:如何正确求助?哪些是违规求助? 2977782
关于积分的说明 8682043
捐赠科研通 2658903
什么是DOI,文献DOI怎么找? 1455990
科研通“疑难数据库(出版商)”最低求助积分说明 674206
邀请新用户注册赠送积分活动 664884