A systematic review and analysis of deep learning-based underwater object detection

水下 目标检测 计算机科学 人工智能 计算机视觉 对象(语法) Viola–Jones对象检测框架 能见度 透视图(图形) 对象类检测 模式识别(心理学) 地理 人脸检测 面部识别系统 气象学 考古
作者
Shubo Xu,Minghua Zhang,Wei Song,Haibin Mei,Qi He,Antonio Liotta
出处
期刊:Neurocomputing [Elsevier]
卷期号:527: 204-232 被引量:81
标识
DOI:10.1016/j.neucom.2023.01.056
摘要

Underwater object detection is one of the most challenging research topics in computer vision technology. The complex underwater environment makes underwater images suffer from high noise, low visibility, blurred edges, low contrast and color deviation, which brings significant challenges to underwater object detection tasks. In underwater object detection tasks, traditional object detection methods often perform poorly in terms of accuracy and generalization capabilities. Underwater object detection requires accurate, stable, generalizable, real-time and lightweight detection models, for which many researchers have proposed various underwater object detection techniques based on deep learning. Although many outstanding results have been achieved on underwater object detection over the years, the research status of underwater object detection techniques are still lack of unified induction, and some existing problems need to be further probed from the latest perspective. In addition, previous reviews lack analysis on the relationship between underwater image enhancement and object detection. Therefore, this paper provides a comprehensive review of the current research challenges, future development trends, and potential applications of underwater object detection techniques. More importantly, this paper has explored the internal relationship between underwater image enhancement and object detection, and analyzed the possible implementation manners of underwater image enhancement in the object detection task in order to further enhance its benefits. The experiments show the performances of current underwater image enhancement and state-of-the-art object detection algorithms, point out their limitations, and indicate that there is not a strict positive correlation between underwater image enhancement and the accuracy improvement of object detection. The domain shift caused by underwater image enhancement cannot be ignored. This paper can be regarded as a guide for future works on underwater object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Erich发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
小二郎应助小丘2024采纳,获得10
1秒前
我是老大应助务实绿柏采纳,获得10
2秒前
兴奋的若菱完成签到 ,获得积分10
3秒前
唐妮完成签到,获得积分10
3秒前
爆米花应助辰勃采纳,获得10
3秒前
刀笔吏完成签到,获得积分10
4秒前
4秒前
chen应助柳易槐采纳,获得10
5秒前
我今停杯一问之应助kjding采纳,获得10
5秒前
6秒前
大个应助标致的碧蓉采纳,获得10
7秒前
8秒前
慕青应助chercher采纳,获得10
9秒前
10秒前
11秒前
顺心醉蝶完成签到,获得积分10
12秒前
小柒完成签到,获得积分10
13秒前
Guofenglei发布了新的文献求助10
14秒前
务实绿柏发布了新的文献求助10
15秒前
大宋发布了新的文献求助10
16秒前
一二完成签到,获得积分10
16秒前
liciky发布了新的文献求助10
17秒前
aixue完成签到,获得积分10
18秒前
19秒前
after完成签到,获得积分10
19秒前
20秒前
21秒前
EEnno完成签到,获得积分10
23秒前
ALY12345发布了新的文献求助10
24秒前
24秒前
廿七发布了新的文献求助10
25秒前
26秒前
26秒前
科研通AI2S应助成森采纳,获得10
27秒前
27秒前
29秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793064
关于积分的说明 7805155
捐赠科研通 2449387
什么是DOI,文献DOI怎么找? 1303185
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291