A systematic review and analysis of deep learning-based underwater object detection

水下 目标检测 计算机科学 人工智能 计算机视觉 深度学习 机器学习 模式识别(心理学) 地质学 海洋学
作者
Shubo Xu,Minghua Zhang,Wei Song,Haibin Mei,Qi He,Antonio Liotta
出处
期刊:Neurocomputing [Elsevier]
卷期号:527: 204-232 被引量:88
标识
DOI:10.1016/j.neucom.2023.01.056
摘要

Underwater object detection is one of the most challenging research topics in computer vision technology. The complex underwater environment makes underwater images suffer from high noise, low visibility, blurred edges, low contrast and color deviation, which brings significant challenges to underwater object detection tasks. In underwater object detection tasks, traditional object detection methods often perform poorly in terms of accuracy and generalization capabilities. Underwater object detection requires accurate, stable, generalizable, real-time and lightweight detection models, for which many researchers have proposed various underwater object detection techniques based on deep learning. Although many outstanding results have been achieved on underwater object detection over the years, the research status of underwater object detection techniques are still lack of unified induction, and some existing problems need to be further probed from the latest perspective. In addition, previous reviews lack analysis on the relationship between underwater image enhancement and object detection. Therefore, this paper provides a comprehensive review of the current research challenges, future development trends, and potential applications of underwater object detection techniques. More importantly, this paper has explored the internal relationship between underwater image enhancement and object detection, and analyzed the possible implementation manners of underwater image enhancement in the object detection task in order to further enhance its benefits. The experiments show the performances of current underwater image enhancement and state-of-the-art object detection algorithms, point out their limitations, and indicate that there is not a strict positive correlation between underwater image enhancement and the accuracy improvement of object detection. The domain shift caused by underwater image enhancement cannot be ignored. This paper can be regarded as a guide for future works on underwater object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kenzonvay发布了新的文献求助10
1秒前
平淡的雁开完成签到 ,获得积分10
1秒前
勤奋的立果完成签到 ,获得积分10
2秒前
彭于晏应助cookies12采纳,获得10
2秒前
3秒前
虚幻的城应助wxyllxx采纳,获得10
5秒前
Jack完成签到,获得积分10
5秒前
点点完成签到 ,获得积分10
6秒前
7秒前
Goodenough完成签到 ,获得积分10
9秒前
9秒前
年三月完成签到 ,获得积分10
10秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
毛豆应助科研通管家采纳,获得10
14秒前
毛豆应助科研通管家采纳,获得10
14秒前
sissiarno应助科研通管家采纳,获得60
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
毛豆应助科研通管家采纳,获得20
14秒前
华仔应助科研通管家采纳,获得10
15秒前
15秒前
毛豆应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
Zhouzhou应助科研通管家采纳,获得10
15秒前
毛豆应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
15秒前
yml完成签到 ,获得积分10
17秒前
小麻雀发布了新的文献求助10
19秒前
24秒前
cookies12发布了新的文献求助10
28秒前
xdy完成签到 ,获得积分10
29秒前
大观天下发布了新的文献求助10
31秒前
37秒前
cookies12完成签到,获得积分10
38秒前
39秒前
39秒前
Gentleman完成签到,获得积分10
39秒前
甲基醚发布了新的文献求助10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3317519
求助须知:如何正确求助?哪些是违规求助? 2948995
关于积分的说明 8543898
捐赠科研通 2625160
什么是DOI,文献DOI怎么找? 1436614
科研通“疑难数据库(出版商)”最低求助积分说明 665906
邀请新用户注册赠送积分活动 651872