Machine learning-assisted fluorescence visualization for sequential quantitative detection of aluminum and fluoride ions

氟化物 检出限 荧光 计算机科学 离子 主成分分析 X射线荧光 化学 分析化学(期刊) 人工智能 无机化学 光学 环境化学 物理 色谱法 有机化学
作者
Qiang Zhang,Xin Li,Long Yu,Lingxiao Wang,Zhiqing Wen,Pengchen Su,Zhenli Sun,Suhua Wang
出处
期刊:Journal of Environmental Sciences-china [Elsevier]
卷期号:149: 68-78 被引量:7
标识
DOI:10.1016/j.jes.2024.01.023
摘要

The presence of aluminum (Al3+) and fluoride (F−) ions in the environment can be harmful to ecosystems and human health, highlighting the need for accurate and efficient monitoring. In this paper, an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum (Al3+) and fluoride (F−) ions in aqueous solutions. The proposed method involves the synthesis of sulfur-functionalized carbon dots (C-dots) as fluorescence probes, with fluorescence enhancement upon interaction with Al3+ ions, achieving a detection limit of 4.2 nM. Subsequently, in the presence of F− ions, fluorescence is quenched, with a detection limit of 47.6 nM. The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python, followed by data preprocessing. Subsequently, the fingerprint data is subjected to cluster analysis using the K-means model from machine learning, and the average Silhouette Coefficient indicates excellent model performance. Finally, a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions. The results demonstrate that the developed model excels in terms of accuracy and sensitivity. This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment, making it a valuable tool for safeguarding our ecosystems and public health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
敏感的藏鸟完成签到,获得积分10
2秒前
汉堡包应助宋垚采纳,获得10
2秒前
小蘑菇应助Ni9e采纳,获得10
2秒前
杪123完成签到,获得积分10
2秒前
深情安青应助Hans采纳,获得10
2秒前
于鹏发布了新的文献求助10
2秒前
3秒前
无极微光应助帅气的雅琴采纳,获得20
3秒前
令水白发布了新的文献求助10
3秒前
3秒前
打打应助xjdb123采纳,获得10
3秒前
4秒前
4秒前
豆4799发布了新的文献求助10
4秒前
4秒前
guojingjing发布了新的文献求助10
5秒前
XUXU发布了新的文献求助10
5秒前
5秒前
我是老大应助judy123采纳,获得10
5秒前
5秒前
东方元语应助伍子丐的猫采纳,获得20
5秒前
量子星尘发布了新的文献求助10
6秒前
illusion完成签到,获得积分10
6秒前
6秒前
szj发布了新的文献求助30
6秒前
Zx_1993应助Yanhai采纳,获得10
6秒前
6秒前
7秒前
kkkkkkk完成签到,获得积分10
7秒前
8秒前
ddddd发布了新的文献求助30
8秒前
从容祥完成签到,获得积分20
8秒前
张小摆发布了新的文献求助10
8秒前
万能图书馆应助生动阁采纳,获得100
8秒前
SihanYin发布了新的文献求助10
9秒前
自由的蒜苗完成签到,获得积分10
9秒前
嘎嘎嘎发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512216
求助须知:如何正确求助?哪些是违规求助? 4606600
关于积分的说明 14500450
捐赠科研通 4542054
什么是DOI,文献DOI怎么找? 2488803
邀请新用户注册赠送积分活动 1470901
关于科研通互助平台的介绍 1443089