Machine learning-assisted fluorescence visualization for sequential quantitative detection of aluminum and fluoride ions

氟化物 检出限 荧光 计算机科学 离子 主成分分析 X射线荧光 化学 分析化学(期刊) 人工智能 无机化学 光学 环境化学 物理 色谱法 有机化学
作者
Qiang Zhang,Xin Li,Long Yu,Lingxiao Wang,Zhiqing Wen,Pengchen Su,Zhenli Sun,Suhua Wang
出处
期刊:Journal of Environmental Sciences-china [Elsevier]
卷期号:149: 68-78 被引量:3
标识
DOI:10.1016/j.jes.2024.01.023
摘要

The presence of aluminum (Al3+) and fluoride (F−) ions in the environment can be harmful to ecosystems and human health, highlighting the need for accurate and efficient monitoring. In this paper, an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum (Al3+) and fluoride (F−) ions in aqueous solutions. The proposed method involves the synthesis of sulfur-functionalized carbon dots (C-dots) as fluorescence probes, with fluorescence enhancement upon interaction with Al3+ ions, achieving a detection limit of 4.2 nM. Subsequently, in the presence of F− ions, fluorescence is quenched, with a detection limit of 47.6 nM. The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python, followed by data preprocessing. Subsequently, the fingerprint data is subjected to cluster analysis using the K-means model from machine learning, and the average Silhouette Coefficient indicates excellent model performance. Finally, a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions. The results demonstrate that the developed model excels in terms of accuracy and sensitivity. This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment, making it a valuable tool for safeguarding our ecosystems and public health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
Mian发布了新的文献求助10
1秒前
完美世界应助张静静采纳,获得10
1秒前
wu完成签到,获得积分10
1秒前
朴素的书琴完成签到,获得积分10
2秒前
dai完成签到,获得积分10
2秒前
务实大船发布了新的文献求助10
2秒前
四夕水窖完成签到,获得积分10
3秒前
FashionBoy应助曾经的臻采纳,获得10
3秒前
白白发布了新的文献求助10
3秒前
打打应助sternen采纳,获得30
3秒前
111完成签到,获得积分10
3秒前
加减乘除发布了新的文献求助10
4秒前
小憩发布了新的文献求助10
4秒前
ASZXDW完成签到,获得积分10
4秒前
飞翔的小舟完成签到,获得积分20
4秒前
csa1007完成签到,获得积分10
4秒前
纷纷故事完成签到,获得积分10
5秒前
5秒前
哲999发布了新的文献求助10
5秒前
麦苳完成签到,获得积分10
5秒前
6秒前
汉堡包应助JIE采纳,获得10
6秒前
伏地魔完成签到,获得积分10
6秒前
7秒前
yyf完成签到,获得积分10
7秒前
XWT完成签到,获得积分10
7秒前
虚安完成签到 ,获得积分10
7秒前
xqy完成签到 ,获得积分10
7秒前
啵乐乐发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
momo完成签到,获得积分10
9秒前
慕青应助饕餮1235采纳,获得10
9秒前
小蘑菇应助CC采纳,获得10
10秒前
白白完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740