已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Numerical study and machine learning on local flow and heat transfer characteristics of supercritical carbon dioxide mixtures in a sinusoidal wavy channel PCHE

材料科学 压力降 超临界流体 传热系数 超临界二氧化碳 传热 摩尔分数 二氧化碳 热交换器 机械 强化传热 工作液 热力学 热工水力学 物理 化学 有机化学
作者
Zhe-Xi Wen,Jinglin Wu,Shuaishuai Wang,Jiaqi Cheng,Qing Li
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:223: 125278-125278 被引量:15
标识
DOI:10.1016/j.ijheatmasstransfer.2024.125278
摘要

The ambient temperature has a great influence on the practical application of the supercritical carbon dioxide(S-CO2) Brayton cycle. The introduction of mixtures is an effective way to change the critical characteristics of the working fluid, which allows the system to better match the ambient temperature. The mixtures not only affect the overall performance of the power system, but also affect the flow and heat transfer processes in various heat exchange equipment. In this investigation, the physical model of a sinusoidal wavy channel printed circuit heat exchangers (PCHE) is built, and numerical simulations are conducted firstly on the flow and heat transfer characteristics of three S-CO2 mixtures (CO2-He, CO2-Ke and CO2-Xe). Effects of the mole fraction and type of the additive gasses on the thermal-hydraulic performance are discussed, as well as the variations of the local heat transfer coefficients and pressure drop along the flow direction. It's found that transfer coefficient and pressure drop of CO2-He increase with the increase of the additive gas mole fraction n, with maximum heat increases of 396 % and 1147 % against pure S-CO2, respectively. With the increase of n, heat transfer coefficient and pressure drop of CO2-Kr and CO2-Xe decrease. Maximum decreases of 71 % and 38 % can be seen for the heat transfer coefficient and pressure drop against pure CO2 for CO2-Kr, and 80 % and 64 % against pure CO2 for CO2-Xe, respectively. CO2-Xe yields the best thermal-hydraulic performance of the PCHE among the three mixtures. Secondly, machine learning is adopted to predict the local flow and heat transfer characteristics of S-CO2 mixtures in response to the significant variation of S-CO2 mixtures along the flow direction within the PCHE. Four machine learning models including Support vector machine (SVR), Artificial neural network (ANN), Random forest (RF) and Extreme Boosting Tree (XGBoost) are used and the corresponding prediction performance are analysed. It is found that machine learning is efficient and accurate in the prediction. Among the four machine learning models, XGBoost has a strong fitting ability to the local Nu and f, with an R2 of 0.9992 and 0.9718 on the test set, respectively. The prediction results of the XGBoost model can reflect the variations of local Nusselt number and friction factor along the flow direction well. However, ANN has stronger generalization ability in the prediction under new working conditions. The use of machine learning can greatly help the design and optimization of PCHEs with S-CO2 mixtures as working fluids.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
白蓝发布了新的文献求助10
11秒前
戊烷完成签到,获得积分10
16秒前
李木禾完成签到 ,获得积分10
16秒前
桉豆完成签到 ,获得积分10
17秒前
李爱国应助Jodie采纳,获得10
23秒前
linjt完成签到 ,获得积分10
25秒前
白蓝完成签到,获得积分10
30秒前
莉莉丝完成签到,获得积分10
31秒前
yanzilin完成签到 ,获得积分10
31秒前
Medici完成签到,获得积分10
32秒前
36秒前
Jodie发布了新的文献求助10
40秒前
paradox完成签到 ,获得积分10
42秒前
豌豆苗完成签到 ,获得积分10
45秒前
发AM完成签到 ,获得积分10
55秒前
源孤律醒完成签到 ,获得积分10
1分钟前
yy完成签到 ,获得积分10
1分钟前
Bella完成签到 ,获得积分10
1分钟前
和谐板栗完成签到 ,获得积分10
1分钟前
朴素的山蝶完成签到 ,获得积分10
1分钟前
FairyLeaf完成签到 ,获得积分10
1分钟前
朝槿完成签到 ,获得积分10
1分钟前
呆呆完成签到 ,获得积分10
1分钟前
科研通AI6应助Jodie采纳,获得10
1分钟前
小奋青完成签到 ,获得积分10
1分钟前
小young完成签到 ,获得积分0
1分钟前
善良的嫣完成签到 ,获得积分10
1分钟前
1分钟前
青山完成签到 ,获得积分10
1分钟前
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
old杜完成签到,获得积分10
1分钟前
1分钟前
夜夏完成签到,获得积分10
1分钟前
加油杨完成签到 ,获得积分10
1分钟前
慕青应助糊涂的一博采纳,获得10
1分钟前
开朗白山完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558368
求助须知:如何正确求助?哪些是违规求助? 4643314
关于积分的说明 14670898
捐赠科研通 4584728
什么是DOI,文献DOI怎么找? 2515107
邀请新用户注册赠送积分活动 1489181
关于科研通互助平台的介绍 1459789