Numerical study and machine learning on local flow and heat transfer characteristics of supercritical carbon dioxide mixtures in a sinusoidal wavy channel PCHE

材料科学 压力降 超临界流体 传热系数 超临界二氧化碳 传热 摩尔分数 二氧化碳 热交换器 机械 强化传热 工作液 热力学 热工水力学 物理 化学 有机化学
作者
Zhe-Xi Wen,Jinglin Wu,Shuaishuai Wang,Jiaqi Cheng,Qing Li
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:223: 125278-125278 被引量:15
标识
DOI:10.1016/j.ijheatmasstransfer.2024.125278
摘要

The ambient temperature has a great influence on the practical application of the supercritical carbon dioxide(S-CO2) Brayton cycle. The introduction of mixtures is an effective way to change the critical characteristics of the working fluid, which allows the system to better match the ambient temperature. The mixtures not only affect the overall performance of the power system, but also affect the flow and heat transfer processes in various heat exchange equipment. In this investigation, the physical model of a sinusoidal wavy channel printed circuit heat exchangers (PCHE) is built, and numerical simulations are conducted firstly on the flow and heat transfer characteristics of three S-CO2 mixtures (CO2-He, CO2-Ke and CO2-Xe). Effects of the mole fraction and type of the additive gasses on the thermal-hydraulic performance are discussed, as well as the variations of the local heat transfer coefficients and pressure drop along the flow direction. It's found that transfer coefficient and pressure drop of CO2-He increase with the increase of the additive gas mole fraction n, with maximum heat increases of 396 % and 1147 % against pure S-CO2, respectively. With the increase of n, heat transfer coefficient and pressure drop of CO2-Kr and CO2-Xe decrease. Maximum decreases of 71 % and 38 % can be seen for the heat transfer coefficient and pressure drop against pure CO2 for CO2-Kr, and 80 % and 64 % against pure CO2 for CO2-Xe, respectively. CO2-Xe yields the best thermal-hydraulic performance of the PCHE among the three mixtures. Secondly, machine learning is adopted to predict the local flow and heat transfer characteristics of S-CO2 mixtures in response to the significant variation of S-CO2 mixtures along the flow direction within the PCHE. Four machine learning models including Support vector machine (SVR), Artificial neural network (ANN), Random forest (RF) and Extreme Boosting Tree (XGBoost) are used and the corresponding prediction performance are analysed. It is found that machine learning is efficient and accurate in the prediction. Among the four machine learning models, XGBoost has a strong fitting ability to the local Nu and f, with an R2 of 0.9992 and 0.9718 on the test set, respectively. The prediction results of the XGBoost model can reflect the variations of local Nusselt number and friction factor along the flow direction well. However, ANN has stronger generalization ability in the prediction under new working conditions. The use of machine learning can greatly help the design and optimization of PCHEs with S-CO2 mixtures as working fluids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
练习时长两年半应助Steven采纳,获得10
1秒前
1秒前
2秒前
四姑娘发布了新的文献求助10
3秒前
老陈发布了新的文献求助10
3秒前
zsp完成签到 ,获得积分10
3秒前
李东珀发布了新的文献求助10
4秒前
5秒前
暴走农民发布了新的文献求助10
5秒前
Ling完成签到,获得积分10
7秒前
隐形曼青应助曹文迪采纳,获得10
7秒前
qq完成签到 ,获得积分10
7秒前
飞飞飞发布了新的文献求助10
8秒前
真不错完成签到,获得积分10
9秒前
大个应助额我认为采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
Adzuki0812发布了新的文献求助10
13秒前
暴走农民完成签到,获得积分10
13秒前
绝对草草完成签到,获得积分10
15秒前
科研通AI2S应助明捷采纳,获得10
15秒前
开朗曲奇完成签到,获得积分10
17秒前
烟雨梦兮完成签到,获得积分10
17秒前
17秒前
17秒前
香雪若梅完成签到 ,获得积分10
17秒前
学分完成签到 ,获得积分10
17秒前
fei发布了新的文献求助10
18秒前
童书兰完成签到,获得积分10
19秒前
20秒前
糖糖完成签到 ,获得积分20
20秒前
科研韭菜发布了新的文献求助10
20秒前
韩涵发布了新的文献求助10
21秒前
22秒前
SYLH应助Kelly采纳,获得20
22秒前
额我认为发布了新的文献求助10
22秒前
11233完成签到 ,获得积分10
23秒前
李健应助lzcnextdoor采纳,获得10
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975900
求助须知:如何正确求助?哪些是违规求助? 3520207
关于积分的说明 11201602
捐赠科研通 3256663
什么是DOI,文献DOI怎么找? 1798403
邀请新用户注册赠送积分活动 877564
科研通“疑难数据库(出版商)”最低求助积分说明 806430