已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Numerical study and machine learning on local flow and heat transfer characteristics of supercritical carbon dioxide mixtures in a sinusoidal wavy channel PCHE

材料科学 压力降 超临界流体 传热系数 超临界二氧化碳 传热 摩尔分数 二氧化碳 热交换器 机械 强化传热 工作液 热力学 热工水力学 物理 化学 有机化学
作者
Zhe-Xi Wen,Jinglin Wu,Shuaishuai Wang,Jiaqi Cheng,Qing Li
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:223: 125278-125278 被引量:15
标识
DOI:10.1016/j.ijheatmasstransfer.2024.125278
摘要

The ambient temperature has a great influence on the practical application of the supercritical carbon dioxide(S-CO2) Brayton cycle. The introduction of mixtures is an effective way to change the critical characteristics of the working fluid, which allows the system to better match the ambient temperature. The mixtures not only affect the overall performance of the power system, but also affect the flow and heat transfer processes in various heat exchange equipment. In this investigation, the physical model of a sinusoidal wavy channel printed circuit heat exchangers (PCHE) is built, and numerical simulations are conducted firstly on the flow and heat transfer characteristics of three S-CO2 mixtures (CO2-He, CO2-Ke and CO2-Xe). Effects of the mole fraction and type of the additive gasses on the thermal-hydraulic performance are discussed, as well as the variations of the local heat transfer coefficients and pressure drop along the flow direction. It's found that transfer coefficient and pressure drop of CO2-He increase with the increase of the additive gas mole fraction n, with maximum heat increases of 396 % and 1147 % against pure S-CO2, respectively. With the increase of n, heat transfer coefficient and pressure drop of CO2-Kr and CO2-Xe decrease. Maximum decreases of 71 % and 38 % can be seen for the heat transfer coefficient and pressure drop against pure CO2 for CO2-Kr, and 80 % and 64 % against pure CO2 for CO2-Xe, respectively. CO2-Xe yields the best thermal-hydraulic performance of the PCHE among the three mixtures. Secondly, machine learning is adopted to predict the local flow and heat transfer characteristics of S-CO2 mixtures in response to the significant variation of S-CO2 mixtures along the flow direction within the PCHE. Four machine learning models including Support vector machine (SVR), Artificial neural network (ANN), Random forest (RF) and Extreme Boosting Tree (XGBoost) are used and the corresponding prediction performance are analysed. It is found that machine learning is efficient and accurate in the prediction. Among the four machine learning models, XGBoost has a strong fitting ability to the local Nu and f, with an R2 of 0.9992 and 0.9718 on the test set, respectively. The prediction results of the XGBoost model can reflect the variations of local Nusselt number and friction factor along the flow direction well. However, ANN has stronger generalization ability in the prediction under new working conditions. The use of machine learning can greatly help the design and optimization of PCHEs with S-CO2 mixtures as working fluids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
九湖夷上完成签到 ,获得积分10
5秒前
崔家荣发布了新的文献求助10
6秒前
个性凡儿发布了新的文献求助10
10秒前
pgjwl完成签到 ,获得积分10
11秒前
朗源Wu完成签到,获得积分10
14秒前
19秒前
不爱学习的小王完成签到,获得积分10
20秒前
qqqq完成签到 ,获得积分10
20秒前
24秒前
俭朴大碗发布了新的文献求助10
24秒前
25秒前
27秒前
Bob发布了新的文献求助10
27秒前
温暖的蚂蚁完成签到 ,获得积分10
27秒前
27秒前
capitalist完成签到,获得积分20
28秒前
bkagyin应助xw采纳,获得10
29秒前
俭朴大碗完成签到,获得积分10
30秒前
31秒前
李爱国应助RW采纳,获得10
32秒前
fev123完成签到,获得积分10
32秒前
Bob完成签到,获得积分10
32秒前
Hello应助科研通管家采纳,获得30
32秒前
科目三应助科研通管家采纳,获得10
32秒前
在水一方应助科研通管家采纳,获得30
33秒前
小马甲应助科研通管家采纳,获得10
33秒前
bkagyin应助科研通管家采纳,获得10
33秒前
华仔应助科研通管家采纳,获得10
33秒前
JamesPei应助科研通管家采纳,获得10
33秒前
misty发布了新的文献求助10
33秒前
大个应助科研通管家采纳,获得10
33秒前
眰恦完成签到,获得积分10
33秒前
JamesPei应助科研通管家采纳,获得10
33秒前
共享精神应助科研通管家采纳,获得10
33秒前
33秒前
35秒前
35秒前
彭于晏应助hjt采纳,获得10
35秒前
以戈发布了新的文献求助10
36秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248513
求助须知:如何正确求助?哪些是违规求助? 2891915
关于积分的说明 8269223
捐赠科研通 2559929
什么是DOI,文献DOI怎么找? 1388807
科研通“疑难数据库(出版商)”最低求助积分说明 650897
邀请新用户注册赠送积分活动 627798