Numerical study and machine learning on local flow and heat transfer characteristics of supercritical carbon dioxide mixtures in a sinusoidal wavy channel PCHE

材料科学 压力降 超临界流体 传热系数 超临界二氧化碳 传热 摩尔分数 二氧化碳 热交换器 机械 强化传热 工作液 热力学 热工水力学 物理 化学 有机化学
作者
Zhe-Xi Wen,Jinglin Wu,Shuaishuai Wang,Jiaqi Cheng,Qing Li
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:223: 125278-125278 被引量:15
标识
DOI:10.1016/j.ijheatmasstransfer.2024.125278
摘要

The ambient temperature has a great influence on the practical application of the supercritical carbon dioxide(S-CO2) Brayton cycle. The introduction of mixtures is an effective way to change the critical characteristics of the working fluid, which allows the system to better match the ambient temperature. The mixtures not only affect the overall performance of the power system, but also affect the flow and heat transfer processes in various heat exchange equipment. In this investigation, the physical model of a sinusoidal wavy channel printed circuit heat exchangers (PCHE) is built, and numerical simulations are conducted firstly on the flow and heat transfer characteristics of three S-CO2 mixtures (CO2-He, CO2-Ke and CO2-Xe). Effects of the mole fraction and type of the additive gasses on the thermal-hydraulic performance are discussed, as well as the variations of the local heat transfer coefficients and pressure drop along the flow direction. It's found that transfer coefficient and pressure drop of CO2-He increase with the increase of the additive gas mole fraction n, with maximum heat increases of 396 % and 1147 % against pure S-CO2, respectively. With the increase of n, heat transfer coefficient and pressure drop of CO2-Kr and CO2-Xe decrease. Maximum decreases of 71 % and 38 % can be seen for the heat transfer coefficient and pressure drop against pure CO2 for CO2-Kr, and 80 % and 64 % against pure CO2 for CO2-Xe, respectively. CO2-Xe yields the best thermal-hydraulic performance of the PCHE among the three mixtures. Secondly, machine learning is adopted to predict the local flow and heat transfer characteristics of S-CO2 mixtures in response to the significant variation of S-CO2 mixtures along the flow direction within the PCHE. Four machine learning models including Support vector machine (SVR), Artificial neural network (ANN), Random forest (RF) and Extreme Boosting Tree (XGBoost) are used and the corresponding prediction performance are analysed. It is found that machine learning is efficient and accurate in the prediction. Among the four machine learning models, XGBoost has a strong fitting ability to the local Nu and f, with an R2 of 0.9992 and 0.9718 on the test set, respectively. The prediction results of the XGBoost model can reflect the variations of local Nusselt number and friction factor along the flow direction well. However, ANN has stronger generalization ability in the prediction under new working conditions. The use of machine learning can greatly help the design and optimization of PCHEs with S-CO2 mixtures as working fluids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背书强完成签到 ,获得积分10
3秒前
nianshu完成签到 ,获得积分10
5秒前
左丘映易完成签到,获得积分0
6秒前
酷波er应助单薄念波采纳,获得10
12秒前
迅速的念芹完成签到 ,获得积分10
13秒前
Liziqi823完成签到,获得积分10
15秒前
liuyq0501完成签到,获得积分0
18秒前
zhang完成签到 ,获得积分10
20秒前
xybjt完成签到 ,获得积分10
24秒前
glomming完成签到 ,获得积分10
27秒前
Bryan应助LMFY采纳,获得10
35秒前
zhaoxiaonuan完成签到,获得积分10
37秒前
dream完成签到 ,获得积分10
43秒前
落寞剑成完成签到 ,获得积分10
44秒前
故意的怜晴完成签到 ,获得积分10
45秒前
是小小李哇完成签到 ,获得积分10
47秒前
YangMengting完成签到 ,获得积分10
47秒前
帅气天荷完成签到 ,获得积分10
51秒前
潘fujun完成签到 ,获得积分10
56秒前
btcat完成签到,获得积分10
58秒前
书生也是小郎中完成签到 ,获得积分10
59秒前
西瓜霜完成签到 ,获得积分10
1分钟前
sougardenist完成签到 ,获得积分10
1分钟前
manmanzhong完成签到 ,获得积分10
1分钟前
hi应助科研爱好者采纳,获得10
1分钟前
TMOMOR完成签到,获得积分0
1分钟前
yzhilson完成签到 ,获得积分10
1分钟前
性感母蟑螂完成签到 ,获得积分10
1分钟前
sunsunsun完成签到,获得积分10
1分钟前
神外王001完成签到 ,获得积分10
1分钟前
1分钟前
hi应助Bismarck采纳,获得10
1分钟前
ceploup完成签到,获得积分10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
kk2024应助科研通管家采纳,获得20
1分钟前
1分钟前
kk2024应助科研通管家采纳,获得20
1分钟前
baitaowl完成签到 ,获得积分10
1分钟前
Never stall完成签到 ,获得积分10
1分钟前
tingalan完成签到,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167368
捐赠科研通 3248732
什么是DOI,文献DOI怎么找? 1794465
邀请新用户注册赠送积分活动 875065
科研通“疑难数据库(出版商)”最低求助积分说明 804664