Numerical study and machine learning on local flow and heat transfer characteristics of supercritical carbon dioxide mixtures in a sinusoidal wavy channel PCHE

材料科学 压力降 超临界流体 传热系数 超临界二氧化碳 传热 摩尔分数 二氧化碳 热交换器 机械 强化传热 工作液 热力学 热工水力学 物理 化学 有机化学
作者
Zhe-Xi Wen,Jinglin Wu,Shuaishuai Wang,Jiaqi Cheng,Qing Li
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:223: 125278-125278 被引量:15
标识
DOI:10.1016/j.ijheatmasstransfer.2024.125278
摘要

The ambient temperature has a great influence on the practical application of the supercritical carbon dioxide(S-CO2) Brayton cycle. The introduction of mixtures is an effective way to change the critical characteristics of the working fluid, which allows the system to better match the ambient temperature. The mixtures not only affect the overall performance of the power system, but also affect the flow and heat transfer processes in various heat exchange equipment. In this investigation, the physical model of a sinusoidal wavy channel printed circuit heat exchangers (PCHE) is built, and numerical simulations are conducted firstly on the flow and heat transfer characteristics of three S-CO2 mixtures (CO2-He, CO2-Ke and CO2-Xe). Effects of the mole fraction and type of the additive gasses on the thermal-hydraulic performance are discussed, as well as the variations of the local heat transfer coefficients and pressure drop along the flow direction. It's found that transfer coefficient and pressure drop of CO2-He increase with the increase of the additive gas mole fraction n, with maximum heat increases of 396 % and 1147 % against pure S-CO2, respectively. With the increase of n, heat transfer coefficient and pressure drop of CO2-Kr and CO2-Xe decrease. Maximum decreases of 71 % and 38 % can be seen for the heat transfer coefficient and pressure drop against pure CO2 for CO2-Kr, and 80 % and 64 % against pure CO2 for CO2-Xe, respectively. CO2-Xe yields the best thermal-hydraulic performance of the PCHE among the three mixtures. Secondly, machine learning is adopted to predict the local flow and heat transfer characteristics of S-CO2 mixtures in response to the significant variation of S-CO2 mixtures along the flow direction within the PCHE. Four machine learning models including Support vector machine (SVR), Artificial neural network (ANN), Random forest (RF) and Extreme Boosting Tree (XGBoost) are used and the corresponding prediction performance are analysed. It is found that machine learning is efficient and accurate in the prediction. Among the four machine learning models, XGBoost has a strong fitting ability to the local Nu and f, with an R2 of 0.9992 and 0.9718 on the test set, respectively. The prediction results of the XGBoost model can reflect the variations of local Nusselt number and friction factor along the flow direction well. However, ANN has stronger generalization ability in the prediction under new working conditions. The use of machine learning can greatly help the design and optimization of PCHEs with S-CO2 mixtures as working fluids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助mimi采纳,获得10
1秒前
学术小菜鸟完成签到 ,获得积分10
1秒前
1秒前
真实的俊驰完成签到,获得积分10
1秒前
平淡的蜻蜓完成签到,获得积分10
2秒前
2秒前
Vii应助宋宋宋2采纳,获得10
3秒前
胡天萌发布了新的文献求助10
4秒前
Grinder完成签到 ,获得积分10
5秒前
MADKAI发布了新的文献求助20
5秒前
圆滑的铁勺完成签到,获得积分10
6秒前
6秒前
6秒前
zhangting完成签到,获得积分10
7秒前
AAAAAAAAAAA完成签到,获得积分10
7秒前
vvvvvvv完成签到,获得积分10
7秒前
7秒前
wanyanjin应助1111采纳,获得10
7秒前
gaos发布了新的文献求助10
8秒前
小吴完成签到,获得积分10
9秒前
迟大猫应助Star1983采纳,获得10
9秒前
chinning完成签到,获得积分10
10秒前
Mon_zh发布了新的文献求助20
10秒前
10秒前
漂亮送终完成签到,获得积分10
10秒前
朴素篮球发布了新的文献求助10
11秒前
天才完成签到 ,获得积分10
11秒前
不喝可乐发布了新的文献求助10
11秒前
12秒前
皮尤尤发布了新的文献求助10
12秒前
13秒前
道中道完成签到,获得积分10
14秒前
14秒前
知之然完成签到,获得积分10
14秒前
研友_n2QP2L完成签到,获得积分10
14秒前
Lucas应助安静听白采纳,获得10
14秒前
CC发布了新的文献求助10
14秒前
星辰大海应助系统提示采纳,获得10
15秒前
15秒前
sss完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678