Exploring the role of Convolutional Neural Networks (CNN) in dental radiography segmentation: A comprehensive Systematic Literature Review

计算机科学 卷积神经网络 分割 人工智能 系统回顾 模式识别(心理学) 梅德林 政治学 法学
作者
Walid Brahmi,Imen Jdey,Fadoua Drira
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108510-108510 被引量:3
标识
DOI:10.1016/j.engappai.2024.108510
摘要

In dentistry, there is a growing need for accurate diagnostic tools, particularly advanced imaging techniques such as Computed Tomography (CT), Cone Beam Computed Tomography (CBCT), Magnetic Resonance Imaging (MRI), ultrasound, and traditional intraoral periapical X-rays. Deep Learning (DL) has emerged as a pivotal tool, facilitating automated segmentation that is crucial for extracting essential diagnostic data. This integration of cutting-edge technology addresses the urgent need for effective management of dental conditions. If left undetected, these conditions can significantly affect human health. Deep Learning (DL) has an impressive track record in various domains, including dentistry, underscoring its potential to revolutionize early detection and treatment of oral health issues. Convolutional Neural Networks (CNNs) have demonstrated significant results in diagnosis and prediction, representing an emerging field of multidisciplinary research. The goals of this study were to provide a concise overview of the state of the art, standardize ongoing debates, and establish baselines for future research. The methodology employed in this study involved a Systematic Literature Review (SLR) to identify and select relevant studies that specifically investigated deep learning techniques for dental imaging analysis. This study elucidates a methodological approach that includes systematic data collection, statistical analysis, and outcome dissemination. By incorporating 45 studies, we identified the selection criteria and research objectives, addressing significant gaps in the existing literature. These studies will assist clinicians in examining dental conditions and classifying dental structures, such as detecting cavities and identifying different types of teeth. The model performance was evaluated by addressing the identified gaps using a variety of metrics that were outlined and explained. This study demonstrated the effectiveness of using CNNs to analyze images and serves as an effective tool for detecting dental pathologies. Despite acknowledging some limitations, CNNs used for segmenting and categorizing teeth demonstrated their highest level of performance overall.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小柒发布了新的文献求助10
1秒前
Jerry完成签到,获得积分10
2秒前
2秒前
张凯完成签到,获得积分10
3秒前
佟韩完成签到,获得积分10
3秒前
勤奋幻天完成签到 ,获得积分10
3秒前
意志所向完成签到,获得积分10
3秒前
zhangh65发布了新的文献求助10
4秒前
5秒前
无花果应助谦让友绿采纳,获得10
5秒前
6秒前
张凯发布了新的文献求助20
6秒前
大虫子完成签到,获得积分10
6秒前
7秒前
SYLH应助Jasmine采纳,获得10
7秒前
Ryanz完成签到,获得积分10
7秒前
7秒前
田様应助冲浪男孩226采纳,获得10
7秒前
p二完成签到,获得积分10
7秒前
7秒前
研友_VZG7GZ应助LiShin采纳,获得10
9秒前
要减肥曼容完成签到,获得积分20
9秒前
深情安青应助初之采纳,获得10
9秒前
拉长的冰海完成签到 ,获得积分10
10秒前
斯文败类应助哈拉少采纳,获得10
10秒前
一方通行发布了新的文献求助10
10秒前
10秒前
11秒前
精明云朵发布了新的文献求助10
12秒前
高木同学发布了新的文献求助10
12秒前
13秒前
13秒前
科研通AI2S应助aura采纳,获得10
13秒前
竹斟酒发布了新的文献求助30
14秒前
14秒前
研友_VZG7GZ应助karma采纳,获得10
14秒前
14秒前
天天快乐应助清似采纳,获得10
15秒前
共享精神应助细腻的山水采纳,获得10
15秒前
苏泠叶发布了新的文献求助30
17秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470791
求助须知:如何正确求助?哪些是违规求助? 3063758
关于积分的说明 9085407
捐赠科研通 2754254
什么是DOI,文献DOI怎么找? 1511347
邀请新用户注册赠送积分活动 698380
科研通“疑难数据库(出版商)”最低求助积分说明 698253