Integrating lymph node ratio into personalized radiotherapy for oral cavity squamous cell carcinoma

医学 淋巴结 肿瘤科 放射治疗 阶段(地层学) 端口(电路理论) 癌症 内科学 外科 古生物学 电气工程 生物 工程类
作者
L. Zhang,Enzhao Zhu,Shuxia Cao,Zisheng Ai,Jiansheng Su
出处
期刊:Head & neck [Wiley]
标识
DOI:10.1002/hed.27938
摘要

Abstract Purpose The use of postoperative radiotherapy (PORT) in patients with oral squamous cell carcinoma (OCSCC) lacks clear boundaries due to the non‐negligible toxicity accompanying its remarkable cancer‐killing effect. This study aims at validating the ability of deep learning models to develop individualized PORT recommendations for patients with OCSCC and quantifying the impact of patient characteristics on treatment selection. Methods Participants were categorized into two groups based on alignment between model‐recommended and actual treatment regimens, with their overall survival compared. Inverse probability treatment weighting was used to reduce bias, and a mixed‐effects multivariate linear regression illustrated how baseline characteristics influenced PORT selection. Results 4990 patients with OCSCC met the inclusion criteria. Deep Survival regression with Mixture Effects (DSME) demonstrated the best performance among all the models and National Comprehensive Cancer Network guidelines. The efficacy of PORT is enhanced as the lymph node ratio (LNR) increases. Similar enhancements in efficacy are observed in patients with advanced age, large tumors, multiple positive lymph nodes, tongue involvement, and stage IVA. Early‐stage (stage 0–II) OCSCC may safely omit PORT. Conclusions This is the first study to incorporate LNR as a tumor character to make personalized recommendations for patients. DSME can effectively identify potential beneficiaries of PORT and provide quantifiable survival benefits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyan发布了新的文献求助10
刚刚
不安初彤完成签到,获得积分10
刚刚
缓慢凝梦发布了新的文献求助10
1秒前
1秒前
Rainbow发布了新的文献求助10
1秒前
完美世界应助等你下课采纳,获得10
2秒前
nZk关闭了nZk文献求助
3秒前
遗迹小白发布了新的文献求助300
3秒前
吴龙完成签到,获得积分10
3秒前
万能图书馆应助天真的邴采纳,获得10
3秒前
今后应助天真的邴采纳,获得10
3秒前
研友_VZG7GZ应助天真的邴采纳,获得10
3秒前
丘比特应助天真的邴采纳,获得10
3秒前
CodeCraft应助天真的邴采纳,获得10
3秒前
徐徐徐应助徒tu采纳,获得10
4秒前
www完成签到 ,获得积分20
4秒前
4秒前
chee发布了新的文献求助30
4秒前
8秒前
8秒前
Ava应助zhaokkkk采纳,获得10
8秒前
CipherSage应助煜琪采纳,获得10
8秒前
master发布了新的文献求助30
8秒前
strong.quite发布了新的文献求助10
9秒前
9秒前
11秒前
hyaoooo完成签到 ,获得积分10
11秒前
科研通AI2S应助cjq采纳,获得10
11秒前
12秒前
崔尔蓉完成签到,获得积分10
13秒前
科学家发布了新的文献求助10
13秒前
14秒前
冷傲的迎南完成签到 ,获得积分10
14秒前
账户已注销应助najibveto采纳,获得30
14秒前
16秒前
17秒前
17秒前
19秒前
19秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149194
求助须知:如何正确求助?哪些是违规求助? 2800255
关于积分的说明 7839329
捐赠科研通 2457827
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628428
版权声明 601706