Carbon Dots for Future Prospects: Synthesis, Characterizations and Recent Applications: A Review (2019–2023)

纳米技术 碳纤维 环境科学 材料科学 复合材料 复合数
作者
Habtamu Fekadu Etefa,Aster Aberra Tessema,F.B. Dejene
出处
期刊:C [MDPI AG]
卷期号:10 (3): 60-60 被引量:1
标识
DOI:10.3390/c10030060
摘要

Carbon dots (CDs) have emerged as a promising class of carbon-based nanomaterials due to their unique properties and versatile applications. Carbon dots (CDs), also known as carbon quantum dots (CQDs) or graphene quantum dots (GQDs), are nanoscale carbon-based materials with dimensions typically less than 10 nanometers. They exhibit intriguing optical, electronic, and chemical properties, making them attractive for a wide range of applications, including sensing, imaging, catalysis, and energy conversion, among many others. Both bottom-up and top-down synthesis approaches are utilized for the synthesis of carbon dots, with each method impacting their physicochemical characteristics. Carbon dots can exhibit diverse structures, including amorphous, crystalline, or hybrid structures, depending on the synthesis method and precursor materials used. CDs have diverse chemical structures with modified oxygen, polymer-based, or amino groups on their surface. These structures influence their optical and electronic properties, such as their photoluminescence, bandgap, and charge carrier mobility, making them tunable for specific applications. Various characterization methods such as HRTEM, XPS, and optical analysis (PL, UV) are used to determine the structure of CDs. CDs are cutting-edge fluorescent nanomaterials with remarkable qualities such as biocompatibility, low toxicity, environmental friendliness, high water solubility, and photostability. They are easily adjustable in terms of their optical properties, making them highly versatile in various fields. CDs find applications in bio-imaging, nanomedicine, drug delivery, solar cells, photocatalysis, electrocatalysis, and other related areas. Carbon dots hold great promise in the field of solar cell technology due to their unique properties, including high photoluminescence, high carbon quantum yield (CQY), and excellent charge separation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hahaha完成签到,获得积分10
1秒前
AL完成签到,获得积分10
1秒前
1秒前
果汁发布了新的文献求助10
2秒前
无聊的秋刀鱼完成签到,获得积分10
3秒前
zike完成签到,获得积分10
4秒前
5秒前
AL发布了新的文献求助200
5秒前
所所应助adinike采纳,获得10
5秒前
6秒前
6秒前
6秒前
小卒完成签到,获得积分10
7秒前
CodeCraft应助孤独的珩采纳,获得10
7秒前
伪电气白兰完成签到 ,获得积分10
7秒前
充电宝应助天天向上采纳,获得10
8秒前
immm完成签到,获得积分10
8秒前
Hello应助寻度采纳,获得10
8秒前
科研通AI2S应助yangluyao采纳,获得10
9秒前
小小邱完成签到,获得积分20
10秒前
小哪吒完成签到,获得积分10
10秒前
直率的匪发布了新的文献求助10
11秒前
11秒前
13秒前
传奇3应助快乐的夜云采纳,获得10
13秒前
13秒前
13秒前
硫酸镁完成签到,获得积分10
13秒前
14秒前
Edison发布了新的文献求助10
14秒前
温眸完成签到,获得积分10
15秒前
直率的芫完成签到,获得积分10
15秒前
16秒前
SciGPT应助云宇采纳,获得10
18秒前
YY发布了新的文献求助10
18秒前
renpan2024发布了新的文献求助10
18秒前
wanci应助小张张采纳,获得10
18秒前
方方发布了新的文献求助10
18秒前
19秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3127482
求助须知:如何正确求助?哪些是违规求助? 2778315
关于积分的说明 7738877
捐赠科研通 2433618
什么是DOI,文献DOI怎么找? 1292999
科研通“疑难数据库(出版商)”最低求助积分说明 623109
版权声明 600489