Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges

变更检测 计算机科学 人工智能 机器学习
作者
Wenzhong Shi,Min Zhang,Rui Zhang,Shanxiong Chen,Zhao Zhan
出处
期刊:Remote Sensing [MDPI AG]
卷期号:12 (10): 1688-1688 被引量:404
标识
DOI:10.3390/rs12101688
摘要

Change detection based on remote sensing (RS) data is an important method of detecting changes on the Earth’s surface and has a wide range of applications in urban planning, environmental monitoring, agriculture investigation, disaster assessment, and map revision. In recent years, integrated artificial intelligence (AI) technology has become a research focus in developing new change detection methods. Although some researchers claim that AI-based change detection approaches outperform traditional change detection approaches, it is not immediately obvious how and to what extent AI can improve the performance of change detection. This review focuses on the state-of-the-art methods, applications, and challenges of AI for change detection. Specifically, the implementation process of AI-based change detection is first introduced. Then, the data from different sensors used for change detection, including optical RS data, synthetic aperture radar (SAR) data, street view images, and combined heterogeneous data, are presented, and the available open datasets are also listed. The general frameworks of AI-based change detection methods are reviewed and analyzed systematically, and the unsupervised schemes used in AI-based change detection are further analyzed. Subsequently, the commonly used networks in AI for change detection are described. From a practical point of view, the application domains of AI-based change detection methods are classified based on their applicability. Finally, the major challenges and prospects of AI for change detection are discussed and delineated, including (a) heterogeneous big data processing, (b) unsupervised AI, and (c) the reliability of AI. This review will be beneficial for researchers in understanding this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
loop发布了新的文献求助10
2秒前
饱满鲂完成签到 ,获得积分10
4秒前
111发布了新的文献求助30
5秒前
8秒前
8秒前
俗人完成签到,获得积分10
8秒前
9秒前
华仔应助cat_head采纳,获得10
10秒前
Adelais完成签到,获得积分20
10秒前
赘婿应助loop采纳,获得10
11秒前
13秒前
Adelais发布了新的文献求助20
14秒前
bji完成签到,获得积分10
14秒前
124332发布了新的文献求助10
15秒前
完美世界应助糊涂的丹南采纳,获得10
15秒前
15秒前
loop完成签到,获得积分10
16秒前
17秒前
卿qing完成签到,获得积分20
17秒前
19秒前
笑点低的钥匙完成签到,获得积分10
20秒前
今后应助kong采纳,获得30
20秒前
劲秉应助卿qing采纳,获得10
21秒前
坚强灵寒发布了新的文献求助30
21秒前
21秒前
MorningStar完成签到,获得积分10
22秒前
脑洞疼应助健忘小霜采纳,获得10
23秒前
23秒前
FLMXene发布了新的文献求助10
23秒前
两棵树完成签到,获得积分10
25秒前
27秒前
情怀应助科研牛马采纳,获得10
29秒前
Orange应助撕裂心海肩膀采纳,获得10
30秒前
30秒前
30秒前
美丽的怀蕊完成签到,获得积分10
30秒前
小胖卷毛完成签到,获得积分10
34秒前
安安安发布了新的文献求助10
35秒前
kong发布了新的文献求助30
36秒前
可耐的无剑完成签到 ,获得积分10
37秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264612
求助须知:如何正确求助?哪些是违规求助? 2904612
关于积分的说明 8331029
捐赠科研通 2574892
什么是DOI,文献DOI怎么找? 1399552
科研通“疑难数据库(出版商)”最低求助积分说明 654511
邀请新用户注册赠送积分活动 633205