脂质体
药理学
多巴胺
药物输送
血脑屏障
医学
左旋多巴
化学
帕金森病
疾病
中枢神经系统
内科学
生物化学
有机化学
作者
Meygal Kahana,Abraham Weizman,Martín Gabay,Yelena Loboda,Hadar Segal‐Gavish,Avishai Gavish,Yael Barhum,Dani Offen,J. P. M. Finberg,Nahum Allon,Moshe Gavish
标识
DOI:10.1038/s41380-020-0742-4
摘要
Delivery of drugs into the brain is poor due to the blood brain barrier (BBB). This study describes the development of a novel liposome-based brain-targeting drug delivery system. The liposomes incorporate a diacylglycerol moiety coupled through a linker to a peptide of 5 amino acids selected from amyloid precursor protein (APP), which is recognized by specific transporter(s)/receptor(s) in the BBB. This liposomal system enables the delivery of drugs across the BBB into the brain. The brain-directed liposomal system was used in a mouse model of Parkinson’s disease (PD). Intra-peritoneal (IP) administration of liposomes loaded with dopamine (DA) demonstrated a good correlation between liposomal DA dose and the behavioral effects in hemiparkinsonian amphetamine-treated mice, with an optimal DA dose of 60 µg/kg. This is significantly lower dose than commonly used doses of the DA precursor levodopa (in the mg/kg range). IP injection of the APP-targeted liposomes loaded with a DA dose of 800 µg/kg, resulted in a significant increase in striatal DA within 5 min (6.9-fold, p < 0.05), in amphetamine-treated mice. The increase in striatal DA content persisted for at least 3 h after administration, which indicates a slow DA release from the delivery system. No elevation in DA content was detected in the heart or the liver. Similar increases in striatal DA were observed also in rats and mini-pigs. The liposomal delivery system enables penetration of compounds through the BBB and may be a candidate for the treatment of PD and other brain diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI