Targeted design of advanced electrocatalysts by machine learning

电催化剂 计算机科学 机器学习 人工智能 生化工程 纳米技术 材料科学 电化学 工程类 化学 电极 物理化学
作者
Letian Chen,Xu Zhang,An Chen,Sai Yao,Xu Hu,Zhen Zhou
出处
期刊:Chinese Journal of Catalysis [China Science Publishing & Media Ltd.]
卷期号:43 (1): 11-32 被引量:78
标识
DOI:10.1016/s1872-2067(21)63852-4
摘要

Exploring the production and application of clean energy has always been the core of sustainable development. As a clean and sustainable technology, electrocatalysis has been receiving widespread attention. It is crucial to achieve efficient, stable and cheap electrocatalysts. However, the traditional “trial and error” method is time-consuming, laborious and costly. In recent years, with the significant increase in computing power, computations have played an important role in electrocatalyst design. Nevertheless, it is still difficult to search for advanced electrocatalysts in the vast chemical space through traditional density functional theory (DFT) computations. Fortunately, the development of machine learning and interdisciplinary integration will inject new impetus into targeted design of electrocatalysts. Machine learning is able to predict electrochemical performances with an accuracy close to DFT. Here we provide an overview of the application of machine learning in electrocatalyst design, including the prediction of structure, thermodynamic properties and kinetic barriers. We also discuss the potential of explicit solvent model combined with machine learning molecular dynamics in this field. Finally, the favorable circumstances and challenges are outlined for the future development of machine learning in electrocatalysis. The studies on electrochemical processes by machine learning will further realize targeted design of high-efficiency electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
怕黑的音响完成签到 ,获得积分10
5秒前
咕咕应助橘涂采纳,获得10
5秒前
李健应助最专业采纳,获得10
6秒前
7秒前
陈住气发布了新的文献求助10
7秒前
FashionBoy应助哈哈采纳,获得10
8秒前
bboo完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
13秒前
mk完成签到,获得积分10
14秒前
chen发布了新的文献求助10
14秒前
shibomeng发布了新的文献求助10
14秒前
荼白完成签到 ,获得积分10
15秒前
goldNAN发布了新的文献求助10
17秒前
17秒前
细心青烟发布了新的文献求助10
18秒前
cjj完成签到,获得积分10
18秒前
PJ完成签到,获得积分10
20秒前
高高的心情完成签到,获得积分20
21秒前
21秒前
tao发布了新的文献求助10
22秒前
23秒前
meini发布了新的文献求助10
23秒前
23秒前
赘婿应助细心青烟采纳,获得10
24秒前
25秒前
25秒前
凤凤完成签到 ,获得积分20
26秒前
shibomeng完成签到,获得积分10
27秒前
28秒前
小王发布了新的文献求助10
29秒前
ding应助大魁采纳,获得10
31秒前
SUE发布了新的文献求助10
32秒前
毕十三发布了新的文献求助10
32秒前
33秒前
33秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462542
求助须知:如何正确求助?哪些是违规求助? 3056077
关于积分的说明 9050722
捐赠科研通 2745731
什么是DOI,文献DOI怎么找? 1506546
科研通“疑难数据库(出版商)”最低求助积分说明 696165
邀请新用户注册赠送积分活动 695677