光致发光
材料科学
钙钛矿(结构)
钝化
兴奋剂
载流子寿命
带隙
光电效应
化学工程
光电子学
纳米技术
硅
图层(电子)
工程类
作者
Lixia Ren,Min Wang,Shuanhu Wang,Hong Yan,Zhan Zhang,Ming Li,Zhaoting Zhang,Jin Kusaka
标识
DOI:10.1021/acsami.9b01506
摘要
The compositional doping techniques can delicately tune the band gap, carrier concentration, and mobility of perovskites to optimize the photoelectric properties of materials. It is reported that the doped perovskites have been widely researched in the photovoltaic and photoelectronic field. Here, we show that the photoluminescence intensity and carrier lifetime of CH3NH3PbI3 films have been improved by 3 orders of magnitude by incorporating abundant MnAc2·4H2O in the perovskite precursor solution, which benefits from the morphological change and surface passivation induced by hydration water and surface manganese acetate. We also witness the increased photoluminescence quantum yield for film and the changed power conversion efficiency for perovskite solar cells. More importantly, the enhanced chemical stability of perovskite is displayed by immersing films into the water.
科研通智能强力驱动
Strongly Powered by AbleSci AI