TDABNet: Three-directional attention block network for the determination of IDH status in low- and high-grade gliomas from MRI

计算机科学 卷积神经网络 异柠檬酸脱氢酶 块(置换群论) 经济短缺 胶质瘤 人工智能 磁共振成像 放射科 医学 物理 癌症研究 数学 哲学 核磁共振 语言学 政府(语言学) 几何学
作者
Lingmei Ai,Wenhao Bai,Mengge Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:75: 103574-103574 被引量:2
标识
DOI:10.1016/j.bspc.2022.103574
摘要

The isocitrate dehydrogenase (IDH) mutation in low- and high-grade gliomas have proven to be the critical molecular biomarker associated with better prognosis. Although the determination of the IDH status of these neoplasms prior to surgical intervention is considered beneficial for prognosis, this information is currently only available after surgical removal of the tissue. At present, most studies have proved the efficiency of deep learning technology in noninvasive diagnosing IDH status. However, there are still some shortages. Firstly, they only input the 2D slices of gliomas into the network, ignoring the significant amount of extra information of gliomas in the third dimension. Secondly, because glioma is a heterogeneous three-dimensional volume with complex imaging features, it is still a challenge for traditional CNN to learn the features that help predict IDH status from magnetic resonance imaging (MRI). To address these issues, we propose a Three-Directional Attention Block Network (TDABNet) based on a three-dimensional convolutional neural network (3D CNN), which can accurately determine the IDH status in gliomas from 3D MRI. The performance of TDABNet was validated in a dataset of 235 patients with low- and high-grade gliomas and the area under the operating characteristic curve (AUC) of IDH status prediction is 96. 44%. It is proved by experiment that TDABNet can accurately predict the IDH status of gliomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助谦让的青亦采纳,获得10
刚刚
刚刚
mooncakeshi完成签到,获得积分10
刚刚
刚刚
积极灯泡完成签到,获得积分10
刚刚
王鑫发布了新的文献求助10
2秒前
2秒前
99giddens举报123求助涉嫌违规
2秒前
笑嘻嘻发布了新的文献求助10
2秒前
赫连山菡发布了新的文献求助30
3秒前
菜鸟jie完成签到,获得积分10
3秒前
清爽灰狼发布了新的文献求助10
3秒前
3秒前
天天快乐应助斯文媚颜采纳,获得10
4秒前
5秒前
科研顺利发布了新的文献求助10
6秒前
星辰大海应助科研混子采纳,获得10
7秒前
Hbobo完成签到,获得积分20
7秒前
邓硕完成签到,获得积分10
7秒前
hitchem发布了新的文献求助10
8秒前
9秒前
苏姑完成签到,获得积分10
9秒前
结实灭男发布了新的文献求助10
9秒前
酷波er应助骑驴找马采纳,获得10
9秒前
不配.应助单人影采纳,获得10
10秒前
碧蓝冰烟完成签到,获得积分10
10秒前
starrysky发布了新的文献求助10
11秒前
12秒前
SYL完成签到,获得积分10
13秒前
Jasper应助清爽灰狼采纳,获得10
13秒前
坦率耳机应助wwww0wwww采纳,获得200
13秒前
善学以致用应助郭猜猜采纳,获得10
15秒前
15秒前
刚少kk完成签到,获得积分10
15秒前
15秒前
我是老大应助shiyu采纳,获得10
16秒前
17秒前
17秒前
xiaoyao完成签到,获得积分10
17秒前
Lisa_Su_8055发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152625
求助须知:如何正确求助?哪些是违规求助? 2803842
关于积分的说明 7855937
捐赠科研通 2461519
什么是DOI,文献DOI怎么找? 1310346
科研通“疑难数据库(出版商)”最低求助积分说明 629199
版权声明 601782