亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A transformer model guided by histopathological image information for DCE-MRI-based prediction of response to neoadjuvant chemotherapy in breast cancer

磁共振成像 乳腺癌 医学 活检 组织病理学 放射科 新辅助治疗 病态的 癌症 病理 内科学
作者
Zhou Yu,Ming Fan,Yuanling Chen,Xinquan Xiao,Xinxin Pan,Lihua Li
标识
DOI:10.1117/12.3006656
摘要

Pathologic diagnosis is the "gold standard" for diagnosing breast cancer and is increasingly used to assess the response to Neoadjuvant Chemotherapy (NACT). Despite its high accuracy and sensitivity, pathology is invasive and requires biopsy of the patient's breast tissue. Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) is the standard of care in breast cancer management and is critical for noninvasive prediction of pathological response to NACT. To this end, we propose a transformer model based on DCE-MRI that is guided by histopathological image data to predict responses to NACT. A cross-attention mechanism was developed to facilitate information interaction between histopathological images and DCE-MRI. Specifically, we designed a modality information transfer module to synthesize histopathological image features from DCE-MRI features. During the training stage, we propose to stochastically use synthesize histopathological image features rather than the real features as network inputs. This strategy enables us to predict the response to NACT by using DCE-MRI alone, regardless of the availability of histopathological images. In this study, 239 patients with paired DCE-MRI and histologic images were included; 32 patients (13.4%) achieved a pathological Complete Response (pCR), while 207 patients (13.4%) had nonpCR. A total of 146 samples were used as the training set, and 93 samples were used as the testing set. The experimental results showed that the proposed histopathological information-guided model using DCE-MRI and histopathological images had a greater predictive performance (AUC=0.824) than either the traditional DCE-MRI (AUC=0.687) or histopathological image-based model (AUC=0.765) in predicting the response to NACT in patients with breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
suzy-123完成签到,获得积分10
9秒前
好好完成签到 ,获得积分10
13秒前
生动的代亦完成签到 ,获得积分10
14秒前
24秒前
morena发布了新的文献求助20
29秒前
bkagyin应助邓邓采纳,获得10
51秒前
琴power完成签到,获得积分10
59秒前
脑洞疼应助香蕉傲松采纳,获得10
1分钟前
Eatanicecube完成签到,获得积分10
1分钟前
1分钟前
泥娃娃完成签到,获得积分10
1分钟前
友好听云发布了新的文献求助10
1分钟前
daqiao发布了新的文献求助10
1分钟前
1分钟前
香蕉傲松完成签到,获得积分10
1分钟前
1分钟前
凡高爱自由完成签到,获得积分10
1分钟前
香蕉傲松发布了新的文献求助10
1分钟前
2分钟前
Winnie完成签到,获得积分10
2分钟前
daqiao完成签到,获得积分10
2分钟前
科研通AI2S应助南风采纳,获得10
2分钟前
光亮千易完成签到,获得积分10
2分钟前
2分钟前
邓邓发布了新的文献求助10
2分钟前
李爱国应助威武碧蓉采纳,获得10
2分钟前
wanci应助可乐采纳,获得30
3分钟前
沐慕籽发布了新的文献求助10
3分钟前
Gracezzz完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Lucas应助王靓仔采纳,获得10
3分钟前
小太阳完成签到 ,获得积分10
3分钟前
可乐发布了新的文献求助30
3分钟前
ztayx完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
王靓仔发布了新的文献求助10
3分钟前
微笑驳完成签到 ,获得积分10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460039
求助须知:如何正确求助?哪些是违规求助? 3054358
关于积分的说明 9041817
捐赠科研通 2743703
什么是DOI,文献DOI怎么找? 1505138
科研通“疑难数据库(出版商)”最低求助积分说明 695572
邀请新用户注册赠送积分活动 694860