高光谱成像
聚类分析
相似性(几何)
光谱聚类
选择(遗传算法)
模式识别(心理学)
分歧(语言学)
相似性度量
光谱带
度量(数据仓库)
人工智能
计算机科学
Kullback-Leibler散度
数学
数据挖掘
遥感
图像(数学)
地理
哲学
语言学
作者
O. Subhash Chander Goud,T. Hitendra Sarma,C. Shoba Bindu
标识
DOI:10.1109/iicaiet59451.2023.10291338
摘要
Hyperspectral imaging provides abundant spectral information with hundreds of bands, but selecting an optimal number of bands is crucial for efficient and accurate data analysis. The k-means clustering method is widely used for band selection, but the quality of clustering and efficiency of band selection depends on the similarity measure used. In this paper, we propose an improved version of k-means clustering using spectral similarity measures (SSM) such as Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and the hybrid measure of SID and SAM (SIDSAM) for optimal band selection. Empirically it is proved that the proposed k-means with spectral similarity measures will identify the best bands and thereby improve the classification accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI