亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MFI-YOLO: Multi-Fault Insulator Detection Based on an Improved YOLOv8

绝缘体(电) 电力传输 故障检测与隔离 残余物 特征提取 计算机科学 模式识别(心理学) 电弧闪光 卷积(计算机科学) 人工智能 电子工程 工程类 算法 人工神经网络 执行机构 电气工程
作者
He Min,Liang Qin,Xinlan Deng,Kaipei Liu
出处
期刊:IEEE Transactions on Power Delivery [Institute of Electrical and Electronics Engineers]
卷期号:39 (1): 168-179 被引量:23
标识
DOI:10.1109/tpwrd.2023.3328178
摘要

Insulators are essential components in power transmission lines. Due to the harsh variations in bad environments, insulators may experience faults. Detecting these insulator faults promptly and effectively is an urgent issue. To rapidly and accurately locate insulators and their faulty regions in aerial images of insulators with complex backgrounds and varying fault sizes, this paper proposes an improved YOLOv8 algorithm for the detection of multiple insulator fault types (MFI-YOLO). This algorithm achieved target feature extraction in complex background images by replacing the C2F network constructed by fusing the GhostNet and multi-scale asymmetric convolution (MSA-GhostBlock). Furthermore, in the feature fusion stage, a multi-scale feature fusion structure called ResPANet, based on residual skip connections, was constructed to replace the PANet. This enhancement aims to improve the network detection accuracy in multi-target scenarios. Finally, to evaluate the algorithm's performance, this study constructed a target detection dataset containing four types of insulators: normal, self-explosive, damaged, and flashover. Experimental results indicate that, compared to the original model, the improved model has increased mean accuracy from 89.2% to 93.9%. The designed model exhibits high detection accuracy in the insulator and its three fault categories, especially for some hard-to-detect fitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助葛力采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
14秒前
DrLee完成签到,获得积分10
15秒前
22秒前
李爱国应助吴彦祖采纳,获得10
28秒前
29秒前
29秒前
Ava应助荔枝采纳,获得10
33秒前
34秒前
科研小黑发布了新的文献求助10
35秒前
37秒前
只如初完成签到,获得积分10
40秒前
42秒前
冬天该很好完成签到,获得积分10
42秒前
好想喝奶茶完成签到,获得积分10
42秒前
咖啡续命完成签到,获得积分10
45秒前
计划完成签到,获得积分10
46秒前
荔枝发布了新的文献求助10
47秒前
50秒前
科研通AI2S应助葛力采纳,获得10
55秒前
55秒前
万能图书馆应助jolyne采纳,获得10
57秒前
荔枝完成签到,获得积分10
58秒前
1分钟前
1分钟前
winfree完成签到 ,获得积分10
1分钟前
1分钟前
咖啡续命发布了新的文献求助10
1分钟前
1分钟前
1分钟前
tuanheqi应助Yasong采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
Rn完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234546
求助须知:如何正确求助?哪些是违规求助? 2880887
关于积分的说明 8217265
捐赠科研通 2548495
什么是DOI,文献DOI怎么找? 1377786
科研通“疑难数据库(出版商)”最低求助积分说明 647999
邀请新用户注册赠送积分活动 623314