Multiply robust causal inference of the restricted mean survival time difference

因果推理 统计 数学 计量经济学 推论 计算机科学 人工智能
作者
Di Shu,Sagori Mukhopadhyay,Hajime Uno,Jeffrey S. Gerber,Douglas E. Schaubel
出处
期刊:Statistical Methods in Medical Research [SAGE Publishing]
卷期号:32 (12): 2386-2404
标识
DOI:10.1177/09622802231211009
摘要

The hazard ratio (HR) remains the most frequently employed metric in assessing treatment effects on survival times. However, the difference in restricted mean survival time (RMST) has become a popular alternative to the HR when the proportional hazards assumption is considered untenable. Moreover, independent of the proportional hazards assumption, many comparative effectiveness studies aim to base contrasts on survival probability rather than on the hazard function. Causal effects based on RMST are often estimated via inverse probability of treatment weighting (IPTW). However, this approach generally results in biased results when the assumed propensity score model is misspecified. Motivated by the need for more robust techniques, we propose an empirical likelihood-based weighting approach that allows for specifying a set of propensity score models. The resulting estimator is consistent when the postulated model set contains a correct model; this property has been termed multiple robustness. In this report, we derive and evaluate a multiply robust estimator of the causal between-treatment difference in RMST. Simulation results confirm its robustness. Compared with the IPTW estimator from a correct model, the proposed estimator tends to be less biased and more efficient in finite samples. Additional simulations reveal biased results from a direct application of machine learning estimation of propensity scores. Finally, we apply the proposed method to evaluate the impact of intrapartum group B streptococcus antibiotic prophylaxis on the risk of childhood allergic disorders using data derived from electronic medical records from the Children’s Hospital of Philadelphia and census data from the American Community Survey.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助阿楊采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
ED应助科研通管家采纳,获得10
5秒前
所所应助王博林采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
张静枝完成签到 ,获得积分10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得30
5秒前
ED应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
CHENG_2025应助安静的棉花糖采纳,获得10
5秒前
5秒前
5秒前
SYLH应助hlf采纳,获得10
6秒前
yuhui完成签到,获得积分10
7秒前
在吃饭的时候吃饭完成签到,获得积分10
8秒前
9秒前
kw完成签到 ,获得积分10
9秒前
穆易羊完成签到 ,获得积分10
11秒前
mmyhn应助79采纳,获得20
12秒前
12秒前
负责冰烟完成签到 ,获得积分10
13秒前
小火苗发布了新的文献求助10
13秒前
木之木完成签到,获得积分10
14秒前
论文顺利发布了新的文献求助30
15秒前
负责惊蛰完成签到 ,获得积分10
19秒前
19秒前
qian发布了新的文献求助30
19秒前
充电宝应助小火苗采纳,获得10
21秒前
gaohui发布了新的文献求助10
24秒前
化工人完成签到,获得积分10
26秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966124
求助须知:如何正确求助?哪些是违规求助? 3511501
关于积分的说明 11158638
捐赠科研通 3246146
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324