亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiply robust causal inference of the restricted mean survival time difference

因果推理 统计 数学 计量经济学 推论 计算机科学 人工智能
作者
Di Shu,Sagori Mukhopadhyay,Hajime Uno,Jeffrey S. Gerber,Douglas E. Schaubel
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:32 (12): 2386-2404
标识
DOI:10.1177/09622802231211009
摘要

The hazard ratio (HR) remains the most frequently employed metric in assessing treatment effects on survival times. However, the difference in restricted mean survival time (RMST) has become a popular alternative to the HR when the proportional hazards assumption is considered untenable. Moreover, independent of the proportional hazards assumption, many comparative effectiveness studies aim to base contrasts on survival probability rather than on the hazard function. Causal effects based on RMST are often estimated via inverse probability of treatment weighting (IPTW). However, this approach generally results in biased results when the assumed propensity score model is misspecified. Motivated by the need for more robust techniques, we propose an empirical likelihood-based weighting approach that allows for specifying a set of propensity score models. The resulting estimator is consistent when the postulated model set contains a correct model; this property has been termed multiple robustness. In this report, we derive and evaluate a multiply robust estimator of the causal between-treatment difference in RMST. Simulation results confirm its robustness. Compared with the IPTW estimator from a correct model, the proposed estimator tends to be less biased and more efficient in finite samples. Additional simulations reveal biased results from a direct application of machine learning estimation of propensity scores. Finally, we apply the proposed method to evaluate the impact of intrapartum group B streptococcus antibiotic prophylaxis on the risk of childhood allergic disorders using data derived from electronic medical records from the Children’s Hospital of Philadelphia and census data from the American Community Survey.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李木禾完成签到 ,获得积分10
2秒前
9秒前
19秒前
30秒前
31秒前
43秒前
Criminology34应助科研通管家采纳,获得10
53秒前
Criminology34应助科研通管家采纳,获得10
53秒前
56秒前
无情的琳发布了新的文献求助10
1分钟前
1分钟前
迷茫的一代完成签到,获得积分10
1分钟前
哈哈哈关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
且听风吟完成签到,获得积分10
1分钟前
1分钟前
1分钟前
嘟嘟嘟嘟发布了新的文献求助10
2分钟前
传奇3应助JodieZhu采纳,获得30
2分钟前
2分钟前
2分钟前
合适的哑铃完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Able完成签到,获得积分10
2分钟前
2分钟前
哈哈哈发布了新的文献求助10
2分钟前
2分钟前
码头整点薯条完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
观潮应助码头整点薯条采纳,获得10
3分钟前
Jasper应助码头整点薯条采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724051
求助须知:如何正确求助?哪些是违规求助? 5283928
关于积分的说明 15299551
捐赠科研通 4872214
什么是DOI,文献DOI怎么找? 2616686
邀请新用户注册赠送积分活动 1566580
关于科研通互助平台的介绍 1523420