Flooding mitigation through safe & trustworthy reinforcement learning

计算机科学 洪水(心理学) 强化学习 稳健性(进化) 背景(考古学) 可信赖性 风险分析(工程) 计算机安全 人工智能 业务 基因 心理学 古生物学 生物 化学 生物化学 心理治疗师
作者
Wenchong Tian,Kunlun Xin,Zhiyu Zhang,Muhan Zhao,Zhenliang Liao,Tao Tao
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:620: 129435-129435
标识
DOI:10.1016/j.jhydrol.2023.129435
摘要

Reinforcement learning (RL) has been used in real-time control of urban drainage system (UDS) for flooding mitigation, achieving a milestone in urban water management. However, RL can only guarantee an optimization control, rather than keep the control trajectory safe and trustworthy. Therefore, unacceptable risk still exists when handing over the real-world control process to an RL agent. Although safe learning is effective in enhancing RL's safety, it cannot be applied directly due to the lack of quantitative framework of RL's safety in UDS context. This study conducts three tasks to investigate and improve the safety of RL in UDS. First, a metric framework of RLs' safety in the context of UDS is provided through a mathematic description. Then, it is plugged into safe learning methods to improve RLs' safety in UDS. After that, a systemic uncertainty analysis is employed to evaluate the robustness of RL. The results of the case study indicate that (i) all the RLs show a promising result in flooding mitigation; (ii) safe learning helps RLs achieve a safer control process with a lower average water level and lower frequency of orifices operation; (iii) the robustness of RLs in UDS is influenced by the volume of rainfalls, the degree of randomness, and the type of RLs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
慕容博完成签到 ,获得积分0
1秒前
笑一笑完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
芳芳完成签到,获得积分10
3秒前
11111发布了新的文献求助10
3秒前
chen.完成签到,获得积分10
4秒前
Dan完成签到 ,获得积分10
4秒前
4秒前
淡定自中完成签到 ,获得积分10
5秒前
亲爱的冯老师完成签到 ,获得积分10
5秒前
tang完成签到,获得积分10
6秒前
与淇完成签到,获得积分10
6秒前
伊萨卡完成签到 ,获得积分10
6秒前
Khr1stINK完成签到,获得积分10
7秒前
酷波er应助qcl采纳,获得10
7秒前
1111111完成签到,获得积分10
7秒前
胖九完成签到,获得积分10
7秒前
烟花应助淡然鸡翅采纳,获得10
7秒前
逍遥自在发布了新的文献求助10
8秒前
luke17743508621完成签到 ,获得积分10
8秒前
麦客发布了新的文献求助10
8秒前
林深完成签到,获得积分10
8秒前
柠檬柚子晴完成签到,获得积分10
9秒前
总之发布了新的文献求助10
9秒前
77完成签到 ,获得积分10
9秒前
无私诗云完成签到,获得积分10
9秒前
fussguai完成签到,获得积分10
9秒前
10秒前
海蓝鲸完成签到 ,获得积分10
11秒前
杨小羊完成签到,获得积分10
11秒前
fujun完成签到,获得积分10
12秒前
GSY完成签到,获得积分20
12秒前
邱航完成签到,获得积分10
12秒前
ee完成签到,获得积分10
12秒前
怪兽小泥巴完成签到,获得积分10
13秒前
老实皮皮虾完成签到,获得积分10
14秒前
杰小瑞完成签到,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259