颗粒溶素
穿孔素
生物
颗粒酶B
颗粒酶
质量细胞仪
白细胞介素21
细胞生物学
脱颗粒
效应器
抗原提呈细胞
CD8型
ZAP70型
细胞毒性T细胞
免疫系统
免疫学
表型
体外
生物化学
受体
基因
作者
Bertram Bengsch,Takuya Ohtani,Ramin S. Herati,Niels Bovenschen,Michael Fried,E. John Wherry
标识
DOI:10.1016/j.jim.2017.03.009
摘要
The elimination of infected or tumor cells by direct lysis is a key T and NK cell effector function. T and NK cells can kill target cells by coordinated secretion of cytotoxic granules containing one or both pore-forming proteins, perforin and granulysin and combinations of granzyme (Gzm) family effector proteases (in humans: Gzm A, B, K, M and H). Understanding the pattern of expression of cytotoxic molecules and the relationship to different states of T and NK cells may have direct relevance for immune responses in autoimmunity, infectious disease and cancer. Approaches capable of simultaneously evaluating expression of multiple cytotoxic molecules with detailed information on T and NK differentiation state, however, remain limited. Here, we established a high dimensional mass cytometry approach to comprehensively interrogate single cell proteomic expression of cytotoxic programs and lymphocyte differentiation. This assay identified a coordinated expression pattern of cytotoxic molecules linked to CD8 T cell differentiation stages. Coordinated high expression of perforin, granulysin, Gzm A, Gzm B and Gzm M was associated with markers of late effector memory differentiation and expression of chemokine receptor CX3CR1. However, classical gating and dimensionality reduction approaches also identified other discordant patterns of cytotoxic molecule expression in CD8 T cells, including reduced perforin, but high Gzm A, Gzm K and Gzm M expression. When applied to non-CD8 T cells, this assay identified different patterns of cytotoxic molecule co-expression by CD56hi versus CD56dim defined NK cell developmental stages; in CD4 T cells, low expression of cytotoxic molecules was found mainly in TH1 phenotype cells, but not in Tregs or T follicular helper cells (TFH). Thus, this comprehensive, single cell, proteomic assessment of cytotoxic protein co-expression patterns demonstrates specialized cytotoxic programs in T cells and NK cells linked to their differentiation stages. Such comprehensive cytotoxic profiling may identify distinct patterns of cytotoxic potential relevant for specific infections, autoimmunity or tumor settings.
科研通智能强力驱动
Strongly Powered by AbleSci AI