Reduction of streak artifacts caused by low photon counts utilizing an image-based forward projection in computed tomography

条纹 工件(错误) 投影(关系代数) 计算机视觉 人工智能 能见度 迭代重建 成像体模 合成孔径雷达 计算机科学 核医学 噪音(视频) 降噪 还原(数学) 光学 图像(数学) 物理 数学 医学 算法 几何学
作者
Shinji Niwa,Katsuhiro Ichikawa,Hiroki Kawashima,Tadanori Takata,Shuhei Minami,Wataru Mitsui
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:135: 104583-104583 被引量:6
标识
DOI:10.1016/j.compbiomed.2021.104583
摘要

The streak artifacts in computed tomography (CT) images caused by low photon counts are known to be effectively suppressed by raw-data-based techniques. This study aims to propose a technique to reduce the streak artifact without accessing the raw data. The proposed streak artifact reduction (SAR) technique consists of three steps: numerical forward projection to a CT image, adaptive filtering of the generated sinogram, and image reconstruction from the processed sinogram. The authors have expanded the two-dimensional method (2D-SAR) to three dimensions (3D-SAR) by using consecutive CT images. The modulation transfer function (MTF), the image noise (standard deviation), and the visibility of comb-shaped objects were evaluated at a low dose of 5 mGy. Using anthropomorphic abdominal and chest phantoms, CT images and the artifact index (AI) were compared between 3D-SAR and two types of iterative reconstruction (IR). Sufficient artifact reductions associated with 54% and 61% reduction of noise for 2D- and 3D-SAR, respectively, were obtained in the phantom images, although the 50%MTF decreased by 28%. The visibility of the combs was improved with both the 2D- and 3D-SAR methods. The AI results of 3D-SAR were better than one type of IR and almost equal to the other type of IR, which was consistent with observed artifacts. Both 2D-SAR and 3D-SAR have turned out to be effective in reducing streak artifacts. The proposed technique will be an effective tool since it needs no raw data, and thus can be applied to any CT images produced by a wide variety of CT systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助hui采纳,获得10
刚刚
传奇3应助啊浩o丶采纳,获得10
1秒前
爆米花应助Guo采纳,获得10
3秒前
卷腹ing应助Aaron采纳,获得150
3秒前
充电宝应助神内小大夫采纳,获得10
4秒前
冷静惜文发布了新的文献求助10
4秒前
小叶完成签到,获得积分10
5秒前
Owen应助Leng采纳,获得10
5秒前
gjgy完成签到,获得积分20
6秒前
斯文的莞完成签到,获得积分20
6秒前
future完成签到 ,获得积分10
6秒前
LFJ驳回了CodeCraft应助
7秒前
7秒前
xiangdemeilo完成签到,获得积分10
7秒前
rubyyyy发布了新的文献求助30
10秒前
11秒前
12秒前
超级白山完成签到,获得积分10
12秒前
沫沫发布了新的文献求助10
12秒前
倚楼书生完成签到,获得积分10
13秒前
英姑应助xiangdemeilo采纳,获得10
14秒前
在水一方应助Lyensa采纳,获得10
14秒前
14秒前
15秒前
hiadg完成签到,获得积分10
17秒前
511发布了新的文献求助10
17秒前
倚楼书生发布了新的文献求助10
17秒前
GuSiwen完成签到,获得积分10
17秒前
迟迟发布了新的文献求助10
19秒前
慕青应助142857采纳,获得10
19秒前
啊浩o丶发布了新的文献求助10
20秒前
rubyyyy完成签到,获得积分10
22秒前
zjh完成签到,获得积分10
23秒前
25秒前
25秒前
充电宝应助shice951229采纳,获得10
26秒前
27秒前
Bowman完成签到,获得积分10
28秒前
科研通AI2S应助pumpkin采纳,获得10
28秒前
虚花发布了新的文献求助10
29秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397511
求助须知:如何正确求助?哪些是违规求助? 3006632
关于积分的说明 8821987
捐赠科研通 2693847
什么是DOI,文献DOI怎么找? 1475443
科研通“疑难数据库(出版商)”最低求助积分说明 682412
邀请新用户注册赠送积分活动 675773