材料科学
纳米线
异质结
光电化学电池
纳米技术
分解水
铜
化学工程
制作
光电子学
制氢
电极
氢
光催化
催化作用
化学
冶金
工程类
病理
物理化学
生物化学
有机化学
医学
替代医学
电解质
作者
Alireza Kargar,Yi Jing,Sung Joo Kim,Conor T. Riley,Xiaoqing Pan,Deli Wang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2013-11-19
卷期号:7 (12): 11112-11120
被引量:274
摘要
We report a facile and large-scale fabrication of three-dimensional (3D) ZnO/CuO heterojunction branched nanowires (b-NWs) and their application as photocathodes for photoelectrochemical (PEC) solar hydrogen production in a neutral medium. Using simple, cost-effective thermal oxidation and hydrothermal growth methods, ZnO/CuO b-NWs are grown on copper film or mesh substrates with various ZnO and CuO NWs sizes and densities. The ZnO/CuO b-NWs are characterized in detail using high-resolution scanning and transmission electron microscopies exhibiting single-crystalline defect-free b-NWs with smooth and clean surfaces. The correlation between electrode currents and different NWs sizes and densities are studied in which b-NWs with longer and denser CuO NW cores show higher photocathodic current due to enhanced reaction surface area. The ZnO/CuO b-NW photoelectrodes exhibit broadband photoresponse from UV to near IR region, and higher photocathodic current than the ZnO-coated CuO (core/shell) NWs due to improved surface area and enhanced gas evolution. Significant improvement in the photocathodic current is observed when ZnO/CuO b-NWs are grown on copper mesh compared to copper film. The achieved results offer very useful guidelines in designing b-NWs mesh photoelectrodes for high-efficiency, low-cost, and flexible PEC cells using cheap, earth-abundant materials for clean solar hydrogen generation at large scales.
科研通智能强力驱动
Strongly Powered by AbleSci AI