An Improved Performance of Convolutional Neural Network for Infant Pose Estimation by Evaluating Hyperparameter

超参数 卷积神经网络 计算机科学 人工智能 机器学习 估计 人工神经网络 姿势 模式识别(心理学) 工程类 系统工程
作者
Endah Suryawati Ningrum,Eko Mulyanto Yuniarno,Mauridhi Hery Purnomo
标识
DOI:10.1109/isitia59021.2023.10221125
摘要

The infant stage is crucial for human development, with fidgeting playing a key role in the development of balance and coordination. Recent studies have developed machine learning algorithms that utilize body posture estimation to detect fidgety movements in babies. However, research on optimal hyperparameters for infant posture estimation is still limited. Without a reference to the optimal configuration, research on infant-based pose estimation could be prolonged and deviate from its main goal of detecting infant growth through movement.This paper employs a computer vision approach to enhance the accuracy of predicting fidgety movements in babies. Evaluating the hyperparameters of the Convolutional Neural Network (CNN) model for Baby Pose Estimation can significantly improve its performance. The synthetic and real infant pose (SyRIP) dataset, along with the high-resolution net (HRnet) and distribution-aware coordinate representation of keypoin (DARKPose) models, is utilized for the infant pose estimation dataset. The hyperparameter values were exploited to identify the most optimal results in this research. Among the 37 scenarios, the following hyperparameter combinations yielded the best results: Batch Size combinations of 2 and 4, train epochs of 15 and 150, lambda value of 0.0001, learning rate of 0.00005, learning rate factor of 0.1, learning rate steps of 60 and 120, weight decay of 0.00005, gamma of 0.95, and momentum of 0.9. Increasing the epochs and pre-epochs has proven to enhance the model's performance. Lambda values show a positive correlation with model performance. Conversely, values such as Learning Rate and its factor, steps, gamma, momentum, and weight decay demonstrate a negative correlation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SY发布了新的文献求助10
1秒前
小马甲应助aaaaa22222采纳,获得10
1秒前
1秒前
laitomgpaomian完成签到 ,获得积分10
1秒前
zhu完成签到,获得积分10
2秒前
hsj完成签到,获得积分10
2秒前
麦瑞完成签到 ,获得积分20
2秒前
顾宇完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
所所应助坚强的笑天采纳,获得10
3秒前
ggdio发布了新的文献求助10
3秒前
Hello应助馨妈采纳,获得10
4秒前
JamesPei应助馨妈采纳,获得10
4秒前
5秒前
bkagyin应助L罗1采纳,获得10
5秒前
可爱的函函应助JL采纳,获得10
5秒前
呀呀呀完成签到,获得积分10
5秒前
充电宝应助焱冰采纳,获得10
5秒前
科研通AI6应助瘦瘦的南蕾采纳,获得10
5秒前
小青椒应助风清扬采纳,获得30
6秒前
6秒前
天天完成签到,获得积分10
7秒前
23XZYZN发布了新的文献求助30
7秒前
梅子完成签到 ,获得积分10
8秒前
上官若男应助张磊采纳,获得10
8秒前
清和漾完成签到,获得积分10
8秒前
Di发布了新的文献求助10
8秒前
wwe完成签到,获得积分10
8秒前
丘比特应助顾宇采纳,获得10
8秒前
8秒前
Yi完成签到,获得积分10
8秒前
9秒前
9秒前
Kurans关注了科研通微信公众号
10秒前
Certainty橙子完成签到 ,获得积分10
10秒前
minsu发布了新的文献求助10
10秒前
10秒前
脑洞疼应助嗨喔采纳,获得10
11秒前
浅弋完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483532
求助须知:如何正确求助?哪些是违规求助? 4584237
关于积分的说明 14395715
捐赠科研通 4513936
什么是DOI,文献DOI怎么找? 2473733
邀请新用户注册赠送积分活动 1459777
关于科研通互助平台的介绍 1433177