An Improved Performance of Convolutional Neural Network for Infant Pose Estimation by Evaluating Hyperparameter

超参数 卷积神经网络 计算机科学 人工智能 机器学习 估计 人工神经网络 姿势 模式识别(心理学) 工程类 系统工程
作者
Endah Suryawati Ningrum,Eko Mulyanto Yuniarno,Mauridhi Hery Purnomo
标识
DOI:10.1109/isitia59021.2023.10221125
摘要

The infant stage is crucial for human development, with fidgeting playing a key role in the development of balance and coordination. Recent studies have developed machine learning algorithms that utilize body posture estimation to detect fidgety movements in babies. However, research on optimal hyperparameters for infant posture estimation is still limited. Without a reference to the optimal configuration, research on infant-based pose estimation could be prolonged and deviate from its main goal of detecting infant growth through movement.This paper employs a computer vision approach to enhance the accuracy of predicting fidgety movements in babies. Evaluating the hyperparameters of the Convolutional Neural Network (CNN) model for Baby Pose Estimation can significantly improve its performance. The synthetic and real infant pose (SyRIP) dataset, along with the high-resolution net (HRnet) and distribution-aware coordinate representation of keypoin (DARKPose) models, is utilized for the infant pose estimation dataset. The hyperparameter values were exploited to identify the most optimal results in this research. Among the 37 scenarios, the following hyperparameter combinations yielded the best results: Batch Size combinations of 2 and 4, train epochs of 15 and 150, lambda value of 0.0001, learning rate of 0.00005, learning rate factor of 0.1, learning rate steps of 60 and 120, weight decay of 0.00005, gamma of 0.95, and momentum of 0.9. Increasing the epochs and pre-epochs has proven to enhance the model's performance. Lambda values show a positive correlation with model performance. Conversely, values such as Learning Rate and its factor, steps, gamma, momentum, and weight decay demonstrate a negative correlation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Clown完成签到,获得积分10
2秒前
3秒前
大胆的夏天完成签到,获得积分10
3秒前
4秒前
4秒前
深情安青应助烟火星辰采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助30
5秒前
5秒前
余淮完成签到,获得积分10
6秒前
学术混子完成签到,获得积分10
6秒前
7秒前
7秒前
小杭76应助木子采纳,获得10
8秒前
祁夫人完成签到,获得积分10
8秒前
马嘉泽完成签到,获得积分10
8秒前
8秒前
尉迟希望应助像只猫采纳,获得10
8秒前
NexusExplorer应助小蚂蚁采纳,获得10
9秒前
9秒前
En应助林业光魔采纳,获得10
10秒前
小马甲应助nono采纳,获得10
10秒前
10秒前
CC完成签到,获得积分20
11秒前
小马甲应助念梦采纳,获得10
12秒前
12秒前
qinlonhl完成签到,获得积分10
13秒前
Joie发布了新的文献求助10
13秒前
14秒前
14秒前
16秒前
酷酷的山雁完成签到,获得积分10
17秒前
冷静谷芹发布了新的文献求助10
18秒前
冷酷无情小鲨鱼完成签到 ,获得积分10
19秒前
19秒前
19秒前
Akim应助Fen采纳,获得10
20秒前
20秒前
lxg发布了新的文献求助10
21秒前
脆脆鲨完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087747
求助须知:如何正确求助?哪些是违规求助? 4302968
关于积分的说明 13409636
捐赠科研通 4128431
什么是DOI,文献DOI怎么找? 2260914
邀请新用户注册赠送积分活动 1265026
关于科研通互助平台的介绍 1199399