An Improved Performance of Convolutional Neural Network for Infant Pose Estimation by Evaluating Hyperparameter

超参数 卷积神经网络 计算机科学 人工智能 机器学习 估计 人工神经网络 姿势 模式识别(心理学) 工程类 系统工程
作者
Endah Suryawati Ningrum,Eko Mulyanto Yuniarno,Mauridhi Hery Purnomo
标识
DOI:10.1109/isitia59021.2023.10221125
摘要

The infant stage is crucial for human development, with fidgeting playing a key role in the development of balance and coordination. Recent studies have developed machine learning algorithms that utilize body posture estimation to detect fidgety movements in babies. However, research on optimal hyperparameters for infant posture estimation is still limited. Without a reference to the optimal configuration, research on infant-based pose estimation could be prolonged and deviate from its main goal of detecting infant growth through movement.This paper employs a computer vision approach to enhance the accuracy of predicting fidgety movements in babies. Evaluating the hyperparameters of the Convolutional Neural Network (CNN) model for Baby Pose Estimation can significantly improve its performance. The synthetic and real infant pose (SyRIP) dataset, along with the high-resolution net (HRnet) and distribution-aware coordinate representation of keypoin (DARKPose) models, is utilized for the infant pose estimation dataset. The hyperparameter values were exploited to identify the most optimal results in this research. Among the 37 scenarios, the following hyperparameter combinations yielded the best results: Batch Size combinations of 2 and 4, train epochs of 15 and 150, lambda value of 0.0001, learning rate of 0.00005, learning rate factor of 0.1, learning rate steps of 60 and 120, weight decay of 0.00005, gamma of 0.95, and momentum of 0.9. Increasing the epochs and pre-epochs has proven to enhance the model's performance. Lambda values show a positive correlation with model performance. Conversely, values such as Learning Rate and its factor, steps, gamma, momentum, and weight decay demonstrate a negative correlation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈博文发布了新的文献求助10
刚刚
zzt完成签到,获得积分10
刚刚
ww发布了新的文献求助10
1秒前
万能图书馆应助周游采纳,获得10
3秒前
倩倩发布了新的文献求助10
4秒前
黎日新完成签到,获得积分10
8秒前
8秒前
9秒前
小二郎应助zmx采纳,获得10
9秒前
9秒前
斯文败类应助dhjic采纳,获得10
10秒前
Lam完成签到,获得积分10
10秒前
小马甲应助陈博文采纳,获得10
11秒前
11秒前
邹长飞发布了新的文献求助10
13秒前
somin完成签到,获得积分10
14秒前
小马甲应助倩倩采纳,获得10
14秒前
yxy发布了新的文献求助10
16秒前
周游发布了新的文献求助10
16秒前
情怀应助勤劳的音响采纳,获得10
16秒前
18秒前
阳和启蛰完成签到,获得积分10
18秒前
20秒前
脑洞疼应助yxy采纳,获得30
21秒前
21秒前
脑洞疼应助hhh采纳,获得10
21秒前
23秒前
哇哇哇发布了新的文献求助30
23秒前
23秒前
三十七度小火炉完成签到,获得积分10
24秒前
搜集达人应助ww采纳,获得10
25秒前
25秒前
27秒前
27秒前
28秒前
29秒前
Ai_niyou发布了新的文献求助10
31秒前
zzxx完成签到 ,获得积分10
31秒前
zh发布了新的文献求助10
31秒前
852应助xmh采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975661
求助须知:如何正确求助?哪些是违规求助? 3520000
关于积分的说明 11200535
捐赠科研通 3256410
什么是DOI,文献DOI怎么找? 1798247
邀请新用户注册赠送积分活动 877490
科研通“疑难数据库(出版商)”最低求助积分说明 806390