An Improved Performance of Convolutional Neural Network for Infant Pose Estimation by Evaluating Hyperparameter

超参数 卷积神经网络 计算机科学 人工智能 机器学习 估计 人工神经网络 姿势 模式识别(心理学) 工程类 系统工程
作者
Endah Suryawati Ningrum,Eko Mulyanto Yuniarno,Mauridhi Hery Purnomo
标识
DOI:10.1109/isitia59021.2023.10221125
摘要

The infant stage is crucial for human development, with fidgeting playing a key role in the development of balance and coordination. Recent studies have developed machine learning algorithms that utilize body posture estimation to detect fidgety movements in babies. However, research on optimal hyperparameters for infant posture estimation is still limited. Without a reference to the optimal configuration, research on infant-based pose estimation could be prolonged and deviate from its main goal of detecting infant growth through movement.This paper employs a computer vision approach to enhance the accuracy of predicting fidgety movements in babies. Evaluating the hyperparameters of the Convolutional Neural Network (CNN) model for Baby Pose Estimation can significantly improve its performance. The synthetic and real infant pose (SyRIP) dataset, along with the high-resolution net (HRnet) and distribution-aware coordinate representation of keypoin (DARKPose) models, is utilized for the infant pose estimation dataset. The hyperparameter values were exploited to identify the most optimal results in this research. Among the 37 scenarios, the following hyperparameter combinations yielded the best results: Batch Size combinations of 2 and 4, train epochs of 15 and 150, lambda value of 0.0001, learning rate of 0.00005, learning rate factor of 0.1, learning rate steps of 60 and 120, weight decay of 0.00005, gamma of 0.95, and momentum of 0.9. Increasing the epochs and pre-epochs has proven to enhance the model's performance. Lambda values show a positive correlation with model performance. Conversely, values such as Learning Rate and its factor, steps, gamma, momentum, and weight decay demonstrate a negative correlation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leslie发布了新的文献求助10
刚刚
111发布了新的文献求助10
1秒前
海岸完成签到,获得积分20
1秒前
Orange应助优雅语兰采纳,获得10
1秒前
任性梦旋发布了新的文献求助10
1秒前
2秒前
zhang发布了新的文献求助10
3秒前
领导范儿应助Albertxkcj采纳,获得10
3秒前
4秒前
111完成签到,获得积分20
5秒前
海岸发布了新的文献求助10
5秒前
wsq完成签到 ,获得积分10
5秒前
5秒前
SciGPT应助畅快的涵蕾采纳,获得10
7秒前
乐乐应助小甲同学采纳,获得10
7秒前
佳佳应助山语采纳,获得10
8秒前
8秒前
小房子完成签到,获得积分10
9秒前
双shuang发布了新的文献求助10
10秒前
11秒前
孤独的珩发布了新的文献求助10
11秒前
bkagyin应助leslie采纳,获得10
13秒前
14秒前
keep发布了新的文献求助10
15秒前
单薄的白昼完成签到,获得积分10
15秒前
Albertxkcj发布了新的文献求助10
16秒前
18秒前
Linda完成签到,获得积分10
19秒前
19秒前
万能图书馆应助海岸采纳,获得10
19秒前
20秒前
王森完成签到,获得积分10
20秒前
一叶舟完成签到,获得积分10
20秒前
yaosichao完成签到,获得积分10
22秒前
24秒前
24秒前
Fe_001完成签到 ,获得积分10
25秒前
应然忆完成签到 ,获得积分10
26秒前
含蓄的赛君完成签到,获得积分10
26秒前
科研通AI2S应助ke采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969884
求助须知:如何正确求助?哪些是违规求助? 3514604
关于积分的说明 11174901
捐赠科研通 3249928
什么是DOI,文献DOI怎么找? 1795149
邀请新用户注册赠送积分活动 875599
科研通“疑难数据库(出版商)”最低求助积分说明 804891