UMiT-Net: A U-Shaped Mix-Transformer Network for Extracting Precise Roads Using Remote Sensing Images

计算机科学 分割 人工智能 增采样 变压器 计算机视觉 卷积神经网络 图像分割 计算 模式识别(心理学) 算法 图像(数学) 物理 量子力学 电压
作者
Fei Deng,Wen Luo,Ni Yudong,Xuben Wang,Peng Wang,Gulan Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:7
标识
DOI:10.1109/tgrs.2023.3281132
摘要

Automatic extraction of high-precision roads from remote sensing images is crucial for path planning and road monitoring. However, there is room to improve the accuracy and generalization of existing methods in segmentation due to the challenges posed by ground object occlusion and complex backgrounds. Most existing methods rely on convolutional neural networks (CNNs), but the limitations of convolution prevent direct semantic interaction at a distance. In contrast, Mix-Transformer obtains long-term modeling capability through the self-attention mechanism, and inspired by it, we propose a multiscale self-adaptive network (UMiT-Net) based on the U-shaped structure. First, UMiT-Net extracts global features with the efficient Mix-Transformer backbone. Second, the dilated attention module (DAM) is used in the bottleneck of the network to fuse semantic features further to ensure the connectivity of the road. Third, in the decoder, to improve the accuracy of road segmentation, we construct the multiscale self-adaptive module (MSAM), which summarizes rich scene understanding from dense contexts with strip windows conforming to road morphology, and embed an edge enhancement module (EEM) to correct road edges. Finally, we design patch expanding (PE), which solves the problem of heavy computation of upsampling due to high resolution. The experimental results show that our UMiT-Net is substantially ahead of other state-of-the-art methods and has a significant improvement in generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BKP发布了新的文献求助10
刚刚
emm发布了新的文献求助10
1秒前
yu完成签到,获得积分10
1秒前
哇哇脸完成签到,获得积分10
2秒前
3秒前
5秒前
Yuying完成签到 ,获得积分10
5秒前
Rita发布了新的文献求助10
5秒前
wmemrnrnr发布了新的文献求助30
6秒前
8秒前
wy.he应助野猪亨利28采纳,获得30
8秒前
NexusExplorer应助露露采纳,获得10
9秒前
9秒前
9秒前
暴富小羊发布了新的文献求助10
10秒前
毛毛完成签到,获得积分10
11秒前
12秒前
14秒前
15秒前
啦啦啦完成签到,获得积分10
18秒前
19秒前
xinxin发布了新的文献求助10
19秒前
20秒前
两面性发布了新的文献求助10
22秒前
emm完成签到,获得积分10
22秒前
啦啦啦发布了新的文献求助10
23秒前
lxj发布了新的文献求助10
25秒前
侯mm发布了新的文献求助10
25秒前
小杨完成签到,获得积分10
25秒前
在水一方应助坚强的严青采纳,获得10
26秒前
上官若男应助凡帝采纳,获得10
26秒前
JamesPei应助lize5493采纳,获得30
27秒前
27秒前
开心市民发布了新的文献求助10
28秒前
yang应助xinxin采纳,获得10
28秒前
31秒前
33秒前
故乡的云完成签到,获得积分10
33秒前
懵了完成签到,获得积分10
34秒前
34秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774905
关于积分的说明 7724757
捐赠科研通 2430459
什么是DOI,文献DOI怎么找? 1291134
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323