UMiT-Net: A U-Shaped Mix-Transformer Network for Extracting Precise Roads Using Remote Sensing Images

计算机科学 分割 人工智能 增采样 变压器 计算机视觉 卷积神经网络 图像分割 计算 模式识别(心理学) 算法 图像(数学) 物理 量子力学 电压
作者
Fei Deng,Wen Luo,Ni Yudong,Xuben Wang,Peng Wang,Gulan Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:7
标识
DOI:10.1109/tgrs.2023.3281132
摘要

Automatic extraction of high-precision roads from remote sensing images is crucial for path planning and road monitoring. However, there is room to improve the accuracy and generalization of existing methods in segmentation due to the challenges posed by ground object occlusion and complex backgrounds. Most existing methods rely on convolutional neural networks (CNNs), but the limitations of convolution prevent direct semantic interaction at a distance. In contrast, Mix-Transformer obtains long-term modeling capability through the self-attention mechanism, and inspired by it, we propose a multiscale self-adaptive network (UMiT-Net) based on the U-shaped structure. First, UMiT-Net extracts global features with the efficient Mix-Transformer backbone. Second, the dilated attention module (DAM) is used in the bottleneck of the network to fuse semantic features further to ensure the connectivity of the road. Third, in the decoder, to improve the accuracy of road segmentation, we construct the multiscale self-adaptive module (MSAM), which summarizes rich scene understanding from dense contexts with strip windows conforming to road morphology, and embed an edge enhancement module (EEM) to correct road edges. Finally, we design patch expanding (PE), which solves the problem of heavy computation of upsampling due to high resolution. The experimental results show that our UMiT-Net is substantially ahead of other state-of-the-art methods and has a significant improvement in generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助Jzhaoc580采纳,获得10
1秒前
一团小煤球完成签到,获得积分10
1秒前
英俊的铭应助Phyllis采纳,获得30
2秒前
liuww0778发布了新的文献求助30
2秒前
李白白白完成签到,获得积分10
2秒前
you秀的哈密瓜完成签到 ,获得积分10
3秒前
5秒前
886完成签到,获得积分10
5秒前
coolkid应助夏梦园采纳,获得10
6秒前
7秒前
8秒前
我嘞个豆应助诚心的冰棍采纳,获得10
8秒前
桐桐应助lee采纳,获得10
9秒前
9秒前
FashionBoy应助goufufu采纳,获得10
9秒前
Funnt_kop完成签到,获得积分20
10秒前
du发布了新的文献求助10
11秒前
Lucas应助gattina采纳,获得10
11秒前
诚心的初露完成签到,获得积分10
12秒前
ling关注了科研通微信公众号
12秒前
华仔应助搞怪的人龙采纳,获得10
12秒前
方寸完成签到,获得积分10
13秒前
16秒前
16秒前
shelemi发布了新的文献求助10
16秒前
zwhy完成签到,获得积分10
17秒前
舒适的雪珍完成签到 ,获得积分10
17秒前
传奇3应助方寸采纳,获得10
18秒前
Adrenaline完成签到 ,获得积分10
18秒前
19秒前
白夜完成签到 ,获得积分10
20秒前
正直莫英完成签到,获得积分20
20秒前
20秒前
墨冉发布了新的文献求助20
21秒前
21秒前
锤子米发布了新的文献求助10
22秒前
liuww0778完成签到,获得积分10
23秒前
康康完成签到 ,获得积分10
23秒前
23秒前
谁又动了我的液相完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950931
求助须知:如何正确求助?哪些是违规求助? 3496322
关于积分的说明 11081419
捐赠科研通 3226783
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868029
科研通“疑难数据库(出版商)”最低求助积分说明 800993