计算机科学
分割
人工智能
增采样
变压器
计算机视觉
卷积神经网络
图像分割
计算
模式识别(心理学)
算法
图像(数学)
物理
量子力学
电压
作者
Fei Deng,Wen Luo,Ni Yudong,Xuben Wang,Peng Wang,Gulan Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:61: 1-13
被引量:7
标识
DOI:10.1109/tgrs.2023.3281132
摘要
Automatic extraction of high-precision roads from remote sensing images is crucial for path planning and road monitoring. However, there is room to improve the accuracy and generalization of existing methods in segmentation due to the challenges posed by ground object occlusion and complex backgrounds. Most existing methods rely on convolutional neural networks (CNNs), but the limitations of convolution prevent direct semantic interaction at a distance. In contrast, Mix-Transformer obtains long-term modeling capability through the self-attention mechanism, and inspired by it, we propose a multiscale self-adaptive network (UMiT-Net) based on the U-shaped structure. First, UMiT-Net extracts global features with the efficient Mix-Transformer backbone. Second, the dilated attention module (DAM) is used in the bottleneck of the network to fuse semantic features further to ensure the connectivity of the road. Third, in the decoder, to improve the accuracy of road segmentation, we construct the multiscale self-adaptive module (MSAM), which summarizes rich scene understanding from dense contexts with strip windows conforming to road morphology, and embed an edge enhancement module (EEM) to correct road edges. Finally, we design patch expanding (PE), which solves the problem of heavy computation of upsampling due to high resolution. The experimental results show that our UMiT-Net is substantially ahead of other state-of-the-art methods and has a significant improvement in generalization ability.
科研通智能强力驱动
Strongly Powered by AbleSci AI