Constrained multi-objective optimization evolutionary algorithm for real-world continuous mechanical design problems

计算机科学 进化算法 数学优化 优化算法 算法 人工智能 数学
作者
Fei Ming,Wenyin Gong,Huixiang Zhen,Ling Wang,Liang Gao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:135: 108673-108673 被引量:1
标识
DOI:10.1016/j.engappai.2024.108673
摘要

During the past two decades, evolutionary algorithms have seen great achievements in solving complex optimization problems owing to the advantages brought by their properties, especially constrained multi-objective optimization problems (CMOPs) with multiple conflicting objective functions and constraints which widely exist in industry, scientific research, and daily life. Among the real-world CMOPs, mechanical design problems (MDPs) from the industry widely exist and are important, while unfortunately, most constrained multi-objective evolutionary algorithms (CMOEAs), developed based on benchmark CMOPs, neglect the specific features and challenges of MDPs and thus cannot solve them well to provide the practitioners promising Pareto optimal solutions for decision making. To overcome this limitation, this paper analyzes the features and challenges of MDPs, including badly scaled objective space, decision space properties, and decision variable linkages. Then, we propose a new CMOEA named CMORWMDP. First, instead of the homogeneous operator in existing CMOEAs, a heterogeneous operator strategy is adopted to use the operator of Genetic Algorithm to enhance the convergence and the operator of Differential Evolution to tackle variable linkages. In addition, an improved fitness function that considers normalization is designed for environmental and mating selections. The proposed algorithm is simple, parameter-free, and easy to implement. Experiments on 21 real-world MDPs show its superiority compared to 20 state-of-the-art CMOEAs under the Friedman test and Wilcoxon test on different metrics, demonstrating the effectiveness of the heterogeneous operator and normalization-based fitness for selections for real-world MDPs. Moreover, the effectiveness of the proposed algorithm in solving other real-world CMOPs is also verified, revealing that our methods are very promising in tackling real-world problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
63941367发布了新的文献求助10
1秒前
1秒前
有的没的发布了新的文献求助10
2秒前
李健的小迷弟应助多金采纳,获得10
2秒前
yznfly应助机智大米采纳,获得20
2秒前
桐桐应助wani采纳,获得10
3秒前
二十八亩田完成签到,获得积分10
3秒前
3秒前
shmorby发布了新的文献求助10
4秒前
4秒前
吃饭去不去完成签到,获得积分10
4秒前
4秒前
5秒前
听书人发布了新的文献求助10
5秒前
杨惠子发布了新的文献求助10
6秒前
6秒前
6秒前
边诺发布了新的文献求助10
6秒前
sasa发布了新的文献求助10
7秒前
李牧发布了新的文献求助30
7秒前
7秒前
7秒前
人机发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
石榴喵完成签到,获得积分20
9秒前
荔枝完成签到,获得积分20
9秒前
刘玄德发布了新的文献求助10
9秒前
一一发布了新的文献求助10
9秒前
爆米花应助隐形的绮晴采纳,获得10
10秒前
LGH发布了新的文献求助10
10秒前
lushuang发布了新的文献求助10
10秒前
10秒前
种花兔完成签到 ,获得积分10
10秒前
科研通AI5应助大米粒采纳,获得10
10秒前
阿通完成签到,获得积分10
11秒前
多金完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
渡己。完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604928
求助须知:如何正确求助?哪些是违规求助? 4013105
关于积分的说明 12425996
捐赠科研通 3693702
什么是DOI,文献DOI怎么找? 2036522
邀请新用户注册赠送积分活动 1069549
科研通“疑难数据库(出版商)”最低求助积分说明 953954