亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Constrained multi-objective optimization evolutionary algorithm for real-world continuous mechanical design problems

计算机科学 进化算法 数学优化 优化算法 算法 人工智能 数学
作者
Fei Ming,Wenyin Gong,Huixiang Zhen,Ling Wang,Liang Gao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:135: 108673-108673 被引量:1
标识
DOI:10.1016/j.engappai.2024.108673
摘要

During the past two decades, evolutionary algorithms have seen great achievements in solving complex optimization problems owing to the advantages brought by their properties, especially constrained multi-objective optimization problems (CMOPs) with multiple conflicting objective functions and constraints which widely exist in industry, scientific research, and daily life. Among the real-world CMOPs, mechanical design problems (MDPs) from the industry widely exist and are important, while unfortunately, most constrained multi-objective evolutionary algorithms (CMOEAs), developed based on benchmark CMOPs, neglect the specific features and challenges of MDPs and thus cannot solve them well to provide the practitioners promising Pareto optimal solutions for decision making. To overcome this limitation, this paper analyzes the features and challenges of MDPs, including badly scaled objective space, decision space properties, and decision variable linkages. Then, we propose a new CMOEA named CMORWMDP. First, instead of the homogeneous operator in existing CMOEAs, a heterogeneous operator strategy is adopted to use the operator of Genetic Algorithm to enhance the convergence and the operator of Differential Evolution to tackle variable linkages. In addition, an improved fitness function that considers normalization is designed for environmental and mating selections. The proposed algorithm is simple, parameter-free, and easy to implement. Experiments on 21 real-world MDPs show its superiority compared to 20 state-of-the-art CMOEAs under the Friedman test and Wilcoxon test on different metrics, demonstrating the effectiveness of the heterogeneous operator and normalization-based fitness for selections for real-world MDPs. Moreover, the effectiveness of the proposed algorithm in solving other real-world CMOPs is also verified, revealing that our methods are very promising in tackling real-world problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gaopkid完成签到,获得积分10
5秒前
5秒前
valere完成签到 ,获得积分10
6秒前
10秒前
甜美帅哥发布了新的文献求助10
11秒前
uhne完成签到 ,获得积分10
11秒前
完美世界应助yyds采纳,获得10
11秒前
Gaopkid发布了新的文献求助10
14秒前
25秒前
semon发布了新的文献求助10
29秒前
anqin540540发布了新的文献求助10
30秒前
33秒前
121314wld发布了新的文献求助10
36秒前
39秒前
121314wld完成签到,获得积分10
42秒前
十有五发布了新的文献求助10
44秒前
soft发布了新的文献求助50
50秒前
拿铁小笼包完成签到,获得积分10
50秒前
yujiayou完成签到,获得积分10
50秒前
香蕉觅云应助semon采纳,获得10
53秒前
54秒前
隐形曼青应助叙温雨采纳,获得10
59秒前
修慈发布了新的文献求助10
1分钟前
林白应助廖昱霖采纳,获得10
1分钟前
修慈完成签到,获得积分10
1分钟前
今后应助修慈采纳,获得10
1分钟前
1分钟前
CipherSage应助Magali采纳,获得10
1分钟前
大郭完成签到,获得积分20
1分钟前
LX完成签到,获得积分10
1分钟前
叙温雨发布了新的文献求助10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
1分钟前
yyds发布了新的文献求助10
1分钟前
Amai完成签到,获得积分10
2分钟前
2分钟前
soft完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291397
求助须知:如何正确求助?哪些是违规求助? 4442414
关于积分的说明 13829865
捐赠科研通 4325442
什么是DOI,文献DOI怎么找? 2374255
邀请新用户注册赠送积分活动 1369544
关于科研通互助平台的介绍 1333738