Constrained multi-objective optimization evolutionary algorithm for real-world continuous mechanical design problems

计算机科学 进化算法 数学优化 优化算法 算法 人工智能 数学
作者
Fei Ming,Wenyin Gong,Huixiang Zhen,Ling Wang,Liang Gao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:135: 108673-108673 被引量:1
标识
DOI:10.1016/j.engappai.2024.108673
摘要

During the past two decades, evolutionary algorithms have seen great achievements in solving complex optimization problems owing to the advantages brought by their properties, especially constrained multi-objective optimization problems (CMOPs) with multiple conflicting objective functions and constraints which widely exist in industry, scientific research, and daily life. Among the real-world CMOPs, mechanical design problems (MDPs) from the industry widely exist and are important, while unfortunately, most constrained multi-objective evolutionary algorithms (CMOEAs), developed based on benchmark CMOPs, neglect the specific features and challenges of MDPs and thus cannot solve them well to provide the practitioners promising Pareto optimal solutions for decision making. To overcome this limitation, this paper analyzes the features and challenges of MDPs, including badly scaled objective space, decision space properties, and decision variable linkages. Then, we propose a new CMOEA named CMORWMDP. First, instead of the homogeneous operator in existing CMOEAs, a heterogeneous operator strategy is adopted to use the operator of Genetic Algorithm to enhance the convergence and the operator of Differential Evolution to tackle variable linkages. In addition, an improved fitness function that considers normalization is designed for environmental and mating selections. The proposed algorithm is simple, parameter-free, and easy to implement. Experiments on 21 real-world MDPs show its superiority compared to 20 state-of-the-art CMOEAs under the Friedman test and Wilcoxon test on different metrics, demonstrating the effectiveness of the heterogeneous operator and normalization-based fitness for selections for real-world MDPs. Moreover, the effectiveness of the proposed algorithm in solving other real-world CMOPs is also verified, revealing that our methods are very promising in tackling real-world problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛豆应助帅气念梦采纳,获得30
刚刚
aniver完成签到 ,获得积分10
刚刚
3秒前
5秒前
GGBOND完成签到,获得积分10
5秒前
勤奋幻柏完成签到,获得积分10
6秒前
kk完成签到,获得积分10
8秒前
10秒前
10秒前
千逐发布了新的文献求助10
13秒前
zero37完成签到,获得积分10
13秒前
14秒前
wp048006完成签到,获得积分10
15秒前
阿航完成签到,获得积分10
15秒前
16秒前
AA完成签到 ,获得积分10
16秒前
chenchen发布了新的文献求助10
17秒前
科目三应助米斯特刘采纳,获得10
18秒前
20秒前
陈海明完成签到,获得积分10
21秒前
科研通AI2S应助苻尔曼采纳,获得10
22秒前
活泼的莫茗应助苻尔曼采纳,获得10
22秒前
ChouNen完成签到,获得积分10
22秒前
小巧问芙完成签到 ,获得积分10
23秒前
千逐完成签到,获得积分10
25秒前
cuc发布了新的文献求助10
26秒前
研友_LMBlAn发布了新的文献求助10
26秒前
甜甜奇异果完成签到,获得积分10
28秒前
落后芹菜完成签到,获得积分10
28秒前
cuc完成签到,获得积分10
35秒前
毛豆应助险胜采纳,获得10
36秒前
在水一方完成签到,获得积分0
40秒前
清颜发布了新的文献求助20
40秒前
文章多多完成签到 ,获得积分10
42秒前
asdfqwer应助weishen采纳,获得10
45秒前
46秒前
权志龙爱科研完成签到,获得积分10
47秒前
李爱国应助从容的烧鹅采纳,获得10
48秒前
小曦仔完成签到,获得积分10
48秒前
50秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312191
求助须知:如何正确求助?哪些是违规求助? 2944810
关于积分的说明 8521543
捐赠科研通 2620532
什么是DOI,文献DOI怎么找? 1432870
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115