Constrained multi-objective optimization evolutionary algorithm for real-world continuous mechanical design problems

计算机科学 进化算法 数学优化 优化算法 算法 人工智能 数学
作者
Fei Ming,Wenyin Gong,Huixiang Zhen,Ling Wang,Liang Gao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:135: 108673-108673 被引量:1
标识
DOI:10.1016/j.engappai.2024.108673
摘要

During the past two decades, evolutionary algorithms have seen great achievements in solving complex optimization problems owing to the advantages brought by their properties, especially constrained multi-objective optimization problems (CMOPs) with multiple conflicting objective functions and constraints which widely exist in industry, scientific research, and daily life. Among the real-world CMOPs, mechanical design problems (MDPs) from the industry widely exist and are important, while unfortunately, most constrained multi-objective evolutionary algorithms (CMOEAs), developed based on benchmark CMOPs, neglect the specific features and challenges of MDPs and thus cannot solve them well to provide the practitioners promising Pareto optimal solutions for decision making. To overcome this limitation, this paper analyzes the features and challenges of MDPs, including badly scaled objective space, decision space properties, and decision variable linkages. Then, we propose a new CMOEA named CMORWMDP. First, instead of the homogeneous operator in existing CMOEAs, a heterogeneous operator strategy is adopted to use the operator of Genetic Algorithm to enhance the convergence and the operator of Differential Evolution to tackle variable linkages. In addition, an improved fitness function that considers normalization is designed for environmental and mating selections. The proposed algorithm is simple, parameter-free, and easy to implement. Experiments on 21 real-world MDPs show its superiority compared to 20 state-of-the-art CMOEAs under the Friedman test and Wilcoxon test on different metrics, demonstrating the effectiveness of the heterogeneous operator and normalization-based fitness for selections for real-world MDPs. Moreover, the effectiveness of the proposed algorithm in solving other real-world CMOPs is also verified, revealing that our methods are very promising in tackling real-world problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到,获得积分10
1秒前
Jzhang应助Yimim采纳,获得10
2秒前
沐风发布了新的文献求助20
3秒前
汉关发布了新的文献求助10
5秒前
5秒前
葶儿完成签到,获得积分10
5秒前
安详中蓝完成签到 ,获得积分10
6秒前
呆萌士晋发布了新的文献求助10
6秒前
6秒前
8秒前
呆头发布了新的文献求助10
10秒前
若水发布了新的文献求助200
11秒前
11秒前
12秒前
子川发布了新的文献求助10
12秒前
大头娃娃没下巴完成签到,获得积分10
14秒前
liyuchen完成签到,获得积分10
14秒前
CipherSage应助Lxxx_7采纳,获得10
15秒前
烟花应助永远少年采纳,获得10
15秒前
meng发布了新的文献求助10
17秒前
科研通AI5应助贪吃的猴子采纳,获得10
19秒前
19秒前
可爱的彩虹完成签到,获得积分10
19秒前
小确幸完成签到,获得积分10
19秒前
彭于晏应助毛毛虫采纳,获得10
20秒前
LilyChen完成签到 ,获得积分10
20秒前
Owen应助Su采纳,获得10
20秒前
20秒前
20秒前
21秒前
22秒前
yyyy关注了科研通微信公众号
22秒前
Jane完成签到 ,获得积分10
23秒前
23秒前
23秒前
kento发布了新的文献求助30
23秒前
Akim应助balzacsun采纳,获得10
24秒前
狼来了aas发布了新的文献求助10
24秒前
25秒前
didi完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824