Constrained multi-objective optimization evolutionary algorithm for real-world continuous mechanical design problems

计算机科学 进化算法 数学优化 优化算法 算法 人工智能 数学
作者
Fei Ming,Wenyin Gong,Huixiang Zhen,Ling Wang,Liang Gao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:135: 108673-108673 被引量:1
标识
DOI:10.1016/j.engappai.2024.108673
摘要

During the past two decades, evolutionary algorithms have seen great achievements in solving complex optimization problems owing to the advantages brought by their properties, especially constrained multi-objective optimization problems (CMOPs) with multiple conflicting objective functions and constraints which widely exist in industry, scientific research, and daily life. Among the real-world CMOPs, mechanical design problems (MDPs) from the industry widely exist and are important, while unfortunately, most constrained multi-objective evolutionary algorithms (CMOEAs), developed based on benchmark CMOPs, neglect the specific features and challenges of MDPs and thus cannot solve them well to provide the practitioners promising Pareto optimal solutions for decision making. To overcome this limitation, this paper analyzes the features and challenges of MDPs, including badly scaled objective space, decision space properties, and decision variable linkages. Then, we propose a new CMOEA named CMORWMDP. First, instead of the homogeneous operator in existing CMOEAs, a heterogeneous operator strategy is adopted to use the operator of Genetic Algorithm to enhance the convergence and the operator of Differential Evolution to tackle variable linkages. In addition, an improved fitness function that considers normalization is designed for environmental and mating selections. The proposed algorithm is simple, parameter-free, and easy to implement. Experiments on 21 real-world MDPs show its superiority compared to 20 state-of-the-art CMOEAs under the Friedman test and Wilcoxon test on different metrics, demonstrating the effectiveness of the heterogeneous operator and normalization-based fitness for selections for real-world MDPs. Moreover, the effectiveness of the proposed algorithm in solving other real-world CMOPs is also verified, revealing that our methods are very promising in tackling real-world problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
yuyu发布了新的文献求助10
3秒前
4秒前
可爱的函函应助ksxx采纳,获得10
5秒前
6秒前
8秒前
8秒前
9秒前
贝壳发布了新的文献求助10
10秒前
123发布了新的文献求助10
10秒前
正直无极发布了新的文献求助10
12秒前
13秒前
鲤鱼鸽子完成签到,获得积分0
14秒前
14秒前
思源应助lm采纳,获得20
16秒前
嘿小黑发布了新的文献求助10
16秒前
17秒前
ksxx发布了新的文献求助10
18秒前
19秒前
深情安青应助典雅的俊驰采纳,获得10
19秒前
20秒前
谢谢你变体精灵完成签到,获得积分10
21秒前
123发布了新的文献求助10
22秒前
ksxx完成签到,获得积分20
26秒前
26秒前
yao完成签到 ,获得积分10
30秒前
30秒前
32秒前
QUA应助WFZ采纳,获得10
33秒前
Yuantian发布了新的文献求助10
33秒前
34秒前
英俊的铭应助科研通管家采纳,获得10
35秒前
916应助科研通管家采纳,获得30
35秒前
916应助科研通管家采纳,获得30
35秒前
SYLH应助科研通管家采纳,获得10
35秒前
CodeCraft应助科研通管家采纳,获得10
35秒前
wu8577应助科研通管家采纳,获得10
35秒前
SYLH应助科研通管家采纳,获得10
35秒前
SYLH应助科研通管家采纳,获得10
35秒前
传奇3应助科研通管家采纳,获得10
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141362
捐赠科研通 3241248
什么是DOI,文献DOI怎么找? 1791412
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803417