High-quality PET image synthesis from ultra-low-dose PET/MRI using bi-task deep learning

图像质量 计算机科学 正电子发射断层摄影术 均方误差 深度学习 人工智能 信噪比(成像) 磁共振成像 峰值信噪比 生成对抗网络 相似性(几何) 核医学 噪音(视频) 模式识别(心理学) 图像(数学) 医学 数学 放射科 统计 电信
作者
Hanyu Sun,Yongluo Jiang,Jianmin Yuan,Haining Wang,Dong Liang,Wei Fan,Zhanli Hu,Na Zhang
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:12 (12): 5326-5342 被引量:12
标识
DOI:10.21037/qims-22-116
摘要

Lowering the dose for positron emission tomography (PET) imaging reduces patients' radiation burden but decreases the image quality by increasing noise and reducing imaging detail and quantifications. This paper introduces a method for acquiring high-quality PET images from an ultra-low-dose state to achieve both high-quality images and a low radiation burden.We developed a two-task-based end-to-end generative adversarial network, named bi-c-GAN, that incorporated the advantages of PET and magnetic resonance imaging (MRI) modalities to synthesize high-quality PET images from an ultra-low-dose input. Moreover, a combined loss, including the mean absolute error, structural loss, and bias loss, was created to improve the trained model's performance. Real integrated PET/MRI data from 67 patients' axial heads (each with 161 slices) were used for training and validation purposes. Synthesized images were quantified by the peak signal-to-noise ratio (PSNR), normalized mean square error (NMSE), structural similarity (SSIM), and contrast noise ratio (CNR). The improvement ratios of these four selected quantitative metrics were used to compare the images produced by bi-c-GAN with other methods.In the four-fold cross-validation, the proposed bi-c-GAN outperformed the other three selected methods (U-net, c-GAN, and multiple input c-GAN). With the bi-c-GAN, in a 5% low-dose PET, the image quality was higher than that of the other three methods by at least 6.7% in the PSNR, 0.6% in the SSIM, 1.3% in the NMSE, and 8% in the CNR. In the hold-out validation, bi-c-GAN improved the image quality compared to U-net and c-GAN in both 2.5% and 10% low-dose PET. For example, the PSNR using bi-C-GAN was at least 4.46% in the 2.5% low-dose PET and at most 14.88% in the 10% low-dose PET. Visual examples also showed a higher quality of images generated from the proposed method, demonstrating the denoising and improving ability of bi-c-GAN.By taking advantage of integrated PET/MR images and multitask deep learning (MDL), the proposed bi-c-GAN can efficiently improve the image quality of ultra-low-dose PET and reduce radiation exposure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lllmmm完成签到,获得积分10
1秒前
doctorhuo完成签到,获得积分10
1秒前
科研通AI5应助Pinocchio采纳,获得10
1秒前
5秒前
imomo999发布了新的文献求助10
8秒前
zzx完成签到,获得积分10
9秒前
思源应助隐形的傲易采纳,获得10
11秒前
13秒前
14秒前
沈海完成签到,获得积分10
15秒前
16秒前
zlf完成签到,获得积分10
18秒前
闫圆圆发布了新的文献求助10
18秒前
香蕉觅云应助荣耀采纳,获得10
18秒前
18秒前
Magali应助paulmichael采纳,获得30
20秒前
海蓝青空发布了新的文献求助10
20秒前
20秒前
小樊同学发布了新的文献求助10
23秒前
26秒前
zzz发布了新的文献求助10
28秒前
科研通AI5应助安详绿草采纳,获得10
28秒前
天天快乐应助小樊同学采纳,获得10
29秒前
LOST完成签到 ,获得积分10
31秒前
Owen应助高兴的故事采纳,获得10
32秒前
虚拟的尔蓝完成签到 ,获得积分10
32秒前
doctorhuo发布了新的文献求助10
32秒前
张小馨完成签到 ,获得积分10
32秒前
33秒前
所所应助闫圆圆采纳,获得10
33秒前
王子完成签到,获得积分10
34秒前
ALDXL完成签到,获得积分10
34秒前
海蓝青空完成签到,获得积分10
35秒前
37秒前
努力鸭完成签到 ,获得积分10
37秒前
38秒前
传统的忆山完成签到,获得积分10
39秒前
Ammr发布了新的文献求助10
40秒前
方京梅发布了新的文献求助30
41秒前
41秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522962
求助须知:如何正确求助?哪些是违规求助? 3103939
关于积分的说明 9268115
捐赠科研通 2800675
什么是DOI,文献DOI怎么找? 1537078
邀请新用户注册赠送积分活动 715396
科研通“疑难数据库(出版商)”最低求助积分说明 708777