医学
腺苷
缺血
外渗
麻醉
内皮功能障碍
血脑屏障
脑血流
药理学
内科学
病理
中枢神经系统
作者
Natasha Ting Lee,Ioanna Savvidou,Carly Selan,David Wright,Robert Brkljača,Joanne SJ Chia,Ilaria Calvello,Daphne D.D. Craenmehr,P. Larsson,Volga Tarlac,Amy Vuong,Irena Carmichael,Xiaowei Wang,Karlheinz Peter,Simon C. Robson,Harshal Nandurkar,Maithili Sashindranath
标识
DOI:10.1186/s12974-025-03394-7
摘要
Abstract Global ischemic brain injury occurs after cardiac arrest or prolonged hypotensive episodes following surgery or trauma. It causes significant neurological deficits even after successful re-establishment of blood flow. It is the primary cause of death in 68% of inpatient and 23% of out-of-hospital cardiac arrest cases, but there are currently no treatments. Endothelial activation and dysfunction impairing small vessel blood flow is the cause of brain damage. Purinergic signaling is an endogenous molecular pathway, where CD39 and CD73 catabolize extracellular adenosine triphosphate (eATP) to adenosine. After ischemia, eATP is released, triggering thrombosis and inflammation. In contrast, adenosine is anti-thrombotic, protects against oxidative stress, and suppresses the immune response. Our group developed a bifunctional compound – anti-VCAM-CD39 that targets the dysregulated endothelium and promotes adenosine generation at the infarct site, localising the antithrombotic and anti-inflammatory effects of CD39. We investigated whether anti-VCAM-CD39 could improve outcome in a murine model of global ischaemia caused by dual carotid artery ligation (DCAL). Test drugs anti-VCAM-CD39 and controls were given 3 h after 30 min ischaemia. Assessments at 24 h included neurological function, infarct volume, perfusion, and albumin extravasation to assess blood-brain barrier (BBB) permeability. We showed that there was an overall improvement in neurological deficit in anti-VCAM-CD39-treated mice after DCAL. MRI revealed that these mice had significantly smaller infarcts and reduced apoptotic activity on the side of permanent occlusion, compared to saline treated mice. There was reduced albumin extravasation in treated mice after DCAL, suggesting anti-VCAM-CD39 conferred neuroprotection in the brain through preservation of BBB permeability. In vitro findings confirmed that anti-VCAM-CD39-mediated adenosine production protected against hypoxia-induced endothelial cell death. anti-VCAM-CD39 is a novel therapeutic that can promote neuroprotection, reduce tissue damage and inflammation after hypoxic brain injury in mice. These findings suggest that anti-VCAM-CD39 could be a new avenue of cardiac arrest therapy and could potentially be used in other cerebrovascular diseases where endothelial dysfunction is a constant underlying pathology.
科研通智能强力驱动
Strongly Powered by AbleSci AI