化学
代谢组
硫黄
硫化氢钠
反应中间体
光化学
硫化氢
有机化学
代谢组学
色谱法
催化作用
作者
Biswajit Roy,Meg Shieh,Tsuyoshi Takata,Minkyung Jung,Eshani Das,Shi Xu,Takaaki Akaike,Ming Xian
摘要
Hydrogen persulfide (H2S2) is an important sulfur-containing signaling molecule that plays a crucial role in the homeostasis of various organ systems, such as the renal, cardiovascular, liver, and gastrointestinal systems. However, research on H2S2 in biological settings is still challenging due to its instability and high reactivity. Compounds that can controllably release H2S2 (also known as donors) are thus crucial research tools. Currently, available H2S2 donors are still very limited, with most of them relying on modified disulfide templates. These templates possess an unavoidable limitation of being susceptible to cellular disulfide exchange which can compromise their efficacy. In this work, we explored nondisulfide-based and nonoxidation-dependent templates for the design of H2S2 donors. We found that tertiary naphthacyl thiols could undergo phototriggered C–S homolytic cleavage to form H2S2 via hydrosulfide (HS) radicals. In addition, the release of H2S2 was associated with the formation of a product with strong blue fluorescence, which allowed for real-time monitoring of the release process. This reaction was demonstrated to proceed effectively in both buffers and cells, with the ability to enhance intracellular production of persulfides, including GSSH, CysSSH, H2S2, H2S3, etc. It provides a unique photocontrolled H2S2 donor system with distinct advantages compared to known H2S2 donors due to its good stability and spatiotemporal control ability.
科研通智能强力驱动
Strongly Powered by AbleSci AI