脱落酸
成熟
衰老
转录组
生物
拟南芥
泛素连接酶
基因
转录因子
生物化学
细胞生物学
基因表达
泛素
植物
突变体
作者
Kang‐Di Hu,Meihui Geng,Lin Ma,Gai‐Fang Yao,Min Zhang,Hua Zhang
标识
DOI:10.1093/plphys/kiae560
摘要
Abstract Hydrogen sulfide (H2S) is a signaling molecule that regulates plant senescence. In this study, we found that H2S delays dark-induced senescence in tomato (Solanum lycopersicum) leaves. Transcriptome and RT-qPCR analyses revealed an Ethylene Response Factor ERF.D3 is quickly induced by H2S. H2S also persulfidated ERF.D3 at amino acid residues C115 and C118. CRISPR/Cas9-mediated gene editing and gene overexpression analyses showed that ERF.D3 negatively regulates leaf senescence and fruit ripening. Abscisic acid (ABA) levels were reduced by ERF.D3 overexpression, suggesting ERF.D3 might regulate ABA metabolism. Additionally, the abscisic acid 8'-hydroxylase-encoding gene CYP707A2, which is required for ABA degradation, was identified as an ERF.D3 target gene through transcriptome data, RT-qPCR, dual-luciferase reporter assays and electrophoretic mobility shift assays. ERF.D3 persulfidation enhanced its transcriptional activity towards CYP707A2. Moreover, the E3 ligase RNF217 ubiquitinated ERF.D3, which may accelerate fruit ripening during the late stage of fruit development. Overall, our study provides valuable insights into the roles of a H2S-responsive ERF.D3 and its persulfidation state in delaying leaf senescence and fruit ripening and provides a link between H2S and ABA degradation.
科研通智能强力驱动
Strongly Powered by AbleSci AI