超级电容器
材料科学
电解质
碳纳米管
电极
纳米技术
电容
离子液体
化学工程
储能
离子电导率
电化学
有机化学
化学
物理化学
工程类
催化作用
功率(物理)
物理
量子力学
作者
Tianyu Zhao,Dongzhi Yang,Bai‐Xue Li,Yongzheng Shi,Qiuyan Quan,Nikhil Koratkar,Zhong‐Zhen Yu
标识
DOI:10.1002/adfm.202314825
摘要
Abstract The electrochemical performance of supercapacitors drops precipitously at extreme low temperatures due to a multitude of reasons, which includes electrolyte freezing, sluggish ion transport in the electrode and electrolyte, and high charge transfer resistance at electrode–electrolyte interfaces. To address high interface resistance, a new supercapacitor architecture is reported, in which MXene/carbon nanotube electrodes with vertically aligned channels are synthesized to reduce tortuosity and maximize the electrode–electrolyte contact area. These electrodes are fabricated using a directional‐freezing strategy, generating direct and fast ion transport pathways. Further, a freeze‐resistant electrolyte which shows high ionic conductivity is synthesized by designing a double‐crosslinked polymer network in a binary solvent consisting of ionic liquid and water, which exhibits an ultralow freezing temperature of −54 °C. An all‐in‐one supercapacitor is assembled by an integrated polymerization strategy to minimize interfacial resistances. The resulting device delivers a specific capacitance of 231 F g −1 at 2 mV s −1 and a maximum energy density of 10.17 Wh kg −1 , while maintaining a capacitance retention of 92%, even at an extreme low temperature of −50 °C. The supercapacitor architecture developed in this study, demonstrates the feasibility of electrochemical energy storage at extreme low temperatures.
科研通智能强力驱动
Strongly Powered by AbleSci AI