川地34
缺氧(环境)
医学
内科学
干细胞
癌症研究
生物
氧气
细胞生物学
化学
有机化学
作者
Can Veysel Şoroğlu,İldeniz Uslu-Bıçak,Selin Fulya Toprak,Akif Selim Yavuz,Selçuk Sözer
标识
DOI:10.1016/j.advms.2023.03.003
摘要
Myeloproliferative neoplasms (MPN) are a heterogeneous group of hematopoietic stem-cell diseases with excessive proliferation of one or more blood cell lines. In this study, we evaluated the effect of different oxygen concentrations on HIF-1α and NOS3 gene expression to determine the effect of the bone marrow microenvironment on JAK2V617F positive Philadelphia chromosome negative (Ph-) MPNs.Peripheral blood mononuclear cells (MNC) of 12 patients with Ph- MPN were collected. The presence of JAK2V617F allele status was determined with allele-specific nested PCR analysis. MPN CD34+ and CD34depleted populations were isolated from MNC by magnetic beads. Separate cell cultures of CD34+/depleted populations were managed at different oxygen concentrations including anoxia (∼0%), hypoxia (∼3%), and normoxia (∼20%) conditions for 24 h. HIF-1α and NOS3 gene expression changes were examined in each population related to JAK2V617F status with real time RT-PCR.It was revealed that relative HIF-1α and NOS3 expressions were significantly increased in response to decreased oxygen concentration in all samples. Relative HIF-1α and NOS3 expressions were found to be higher especially in CD34+ and CD34depleted populations carrying JAK2V617F mutations compared to MPN patients carrying wild-type JAK2.JAK2V617F might have specific role in HIF-1α and NOS3 regulations with respect to low oxygen concentrations in Ph- MPN. Further evaluations might reveal the effect of JAK2V617F on Ph- MPN pathogenesis in bone marrow microenvironment.
科研通智能强力驱动
Strongly Powered by AbleSci AI