磷酸三苯酯
降级(电信)
化学
环境化学
有机磷
生物降解
磷酸盐
有机化学
生物
杀虫剂
农学
计算机科学
电信
阻燃剂
作者
Rui Hou,Xiao-San Luo,Chuangchuang Liu,Lihua Zhou,Junlin Wen,Yong Yuan
标识
DOI:10.1016/j.envpol.2019.113040
摘要
Triphenyl phosphate (TPHP) is one of the major organophosphate esters (OPEs) with increasing consumption. Considering its largely distribution and high toxicity in aquatic environment, it is important to explore an efficient treatment for TPHP. This study aimed to investigate the accelerated degradation of TPHP in a three-electrode single chamber bioelectrochemical system (BES). Significant increase of degradation efficiency of TPHP in the BES was observed compared with open circuit and abiotic controls. The one-order degradation rates of TPHP (1.5 mg L−1) were increased with elevating sodium acetate concentrations and showed the highest value (0.054 ± 0.010 h−1) in 1.0 g L−1 of sodium acetate. This result indicated bacterial metabolism of TPHP was enhanced by the application of micro-electrical field and addition acetate as co-substrates. TPHP could be degraded into diphenyl phosphate (DPHP), hydroxyl triphenyl phosphate (OH-TPHP) and three byproducts. DPHP was the most accumulated degradation product in BES, which accounted more than 35.5% of the initial TPHP. The composition of bacterial community in BES electrode was affected by the acclimation by TPHP, with the most dominant bacteria of Azospirillum, Petrimonas, Pseudomonas and Geobacter at the genera level. Moreover, it was found that the acute toxic effect of TPHP to Vibrio fischeri was largely removed after the treatment, which revealed that BES is a promising technology to remove TPHP threaten in aquatic environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI