已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lectin biosensors in cancer glycan biomarker detection

聚糖 糖蛋白组学 凝集素 糖组学 生物标志物 糖基化 生物传感器 计算生物学 糖组 生物标志物发现 化学 癌症生物标志物 癌症 蛋白质组学 生物 生物化学 糖蛋白 基因 遗传学
作者
M. Luísa S. Silva
出处
期刊:Advances in Clinical Chemistry 卷期号:: 1-61 被引量:36
标识
DOI:10.1016/bs.acc.2019.07.001
摘要

Cancer has high incidence and it will continue to increase over the next decades. Detection and quantification of cancer-associated biomarkers is frequently carried out for diagnosis, prognosis and treatment monitoring at various disease stages. It is well-known that glycosylation profiles change significantly during oncogenesis. Aberrant glycans produced during tumorigenesis are, therefore, valuable molecules for detection and characterization of cancer, and for therapeutic design and monitoring. Although glycoproteomics has benefited from the development of analytical tools such as high performance liquid chromatography, two-dimensional gel and capillary electrophoresis and mass spectrometry, these approaches are not well suited for rapid point-of-care (POC) testing easily performed by medical staff. Lectins are biomolecules found in nature with specific affinities toward particular glycan structures and bind them thus forming a relatively strong complex. Because of this characteristic, lectins have been used in analytical techniques for the selective capture or separation of certain glycans in complex samples, namely, in lectin affinity chromatography, or to characterize glycosylation profiles in diverse clinical situations, using lectin microarrays. Lectin-based biosensors have been developed for the detection of specific aberrant and cancer-associated glycostructures to aid diagnosis, prognosis and treatment assessment of these patients. The attractive features of biosensors, such as portability and simple use make them highly suitable for POC testing. Recent developments in lectin biosensors, as well as their potential and pitfalls in cancer glycan biomarker detection, are presented in this chapter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助容言采纳,获得10
刚刚
2秒前
明亮的聋五完成签到,获得积分20
2秒前
6秒前
chemist229完成签到 ,获得积分10
7秒前
aaaaafine完成签到,获得积分10
9秒前
14秒前
15秒前
舒心平文完成签到,获得积分20
16秒前
17秒前
高挑的涛完成签到,获得积分10
18秒前
拉查完成签到 ,获得积分10
21秒前
高挑的涛发布了新的文献求助10
21秒前
23秒前
cleff发布了新的文献求助10
23秒前
自然的茉莉完成签到,获得积分10
24秒前
拉查关注了科研通微信公众号
25秒前
Simon完成签到,获得积分10
26秒前
26秒前
11完成签到,获得积分10
27秒前
亚李完成签到 ,获得积分10
31秒前
Rashalin完成签到,获得积分10
31秒前
32秒前
加菲丰丰举报俭朴的期待求助涉嫌违规
33秒前
科研战士完成签到,获得积分10
34秒前
XudongHou发布了新的文献求助10
38秒前
大乐完成签到 ,获得积分10
41秒前
守正创新是鲜明理论品格完成签到,获得积分10
42秒前
ding应助暴躁的板栗采纳,获得10
48秒前
54秒前
zoey完成签到 ,获得积分10
56秒前
养乐多敬你完成签到 ,获得积分10
57秒前
lyon完成签到 ,获得积分10
58秒前
拾夏完成签到,获得积分10
58秒前
XYX发布了新的文献求助30
59秒前
积极的尔岚完成签到,获得积分10
1分钟前
传奇3应助爱学习的曼卉采纳,获得10
1分钟前
称心曼安完成签到 ,获得积分10
1分钟前
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314323
求助须知:如何正确求助?哪些是违规求助? 2946599
关于积分的说明 8530909
捐赠科研通 2622334
什么是DOI,文献DOI怎么找? 1434459
科研通“疑难数据库(出版商)”最低求助积分说明 665312
邀请新用户注册赠送积分活动 650855