Estimating crop genetic parameters for DSSAT with modified PEST software

DSSAT公司 有害生物分析 农学 作物 作物模拟模型 生物 植物
作者
Haijiao Ma,Robert W. Malone,Tengcong Jiang,Ning Yao,Shang Wen Chen,Libing Song,Hao Feng,Qiang Yu,Jianqiang He
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:115: 126017-126017 被引量:14
标识
DOI:10.1016/j.eja.2020.126017
摘要

Abstract Quickly determining accurate crop genetic parameters for crop model applications can be difficult. In this study, we coupled the independent automatic parameter optimization tool PEST (Parameter ESTimation) with the crop growth model of DSSAT (Decision Support System for Agrotechnology Transfer) using the R programming language. A new DSSAT-PEST package was developed to perform automatic optimization of the crop genetic parameters. In addition, the PEST tool was modified to reduce problems associated with local optima and model runtime. The DSSAT-PEST package was used to estimate the genetic coefficients for five crops (i.e., maize (Zea mays L.), soybean (Glycine max L. Merrill), wheat (Triticum aestivum L.), rice (Oryza sativa L.), and cotton (Gossypium hirsutum L.)) based on existing experiments in the DSSAT database. Three parameter optimization methods were compared based on their efficiency and accuracy for estimating crop genetic parameters: 1) the traditional trial-and-error method (default crop genetic parameters in the DSSAT database); 2) DSSAT-GLUE (general likelihood uncertainty estimation, an existing parameter estimation package in DSSAT), and 3) DSSAT-PEST. The DSSAT-PEST optimization method produced reasonably accurate optimization results and improved optimization efficiency compared with the other two methods. For example, the average absolute relative error (AREs) between relevant field observations and model simulations obtained with DSSAT-PEST were 12 %, 7 %, 18 %, 4 %, and 19 % for the five crops, respectively, which were similar to or better than the results with DSSAT-GLUE and the default method. Additionally, average runtime for DSSAT-PEST was about 65 % of the runtime for DSSAT-GLUE. In general, the DSSAT-PEST package performed similarly to or better than the traditional trial-and-error method and DSSAT-GLUE in terms of both optimization efficiency and accuracy, which should promote wider application of the DSSAT model in agricultural and environmental research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leisure_Lee完成签到,获得积分10
1秒前
MM发布了新的文献求助20
1秒前
阳阳阳发布了新的文献求助10
2秒前
难过的飞雪完成签到,获得积分10
2秒前
道明嗣发布了新的文献求助10
3秒前
whuhustwit发布了新的文献求助10
3秒前
天天快乐应助豆沙包采纳,获得10
6秒前
自然的绿兰应助陈伟杰采纳,获得10
7秒前
Zoey完成签到,获得积分10
8秒前
十二十三发布了新的文献求助10
9秒前
研友_38KgB8完成签到,获得积分10
10秒前
10秒前
12秒前
SinaiPen发布了新的文献求助10
15秒前
15秒前
立华奏完成签到,获得积分10
18秒前
October发布了新的文献求助10
18秒前
18秒前
20秒前
21秒前
yiyi1s发布了新的文献求助10
24秒前
星辰大海应助斑比采纳,获得10
25秒前
26秒前
可爱的函函应助October采纳,获得10
26秒前
呆瓜发布了新的文献求助10
26秒前
情怀应助zjuroc采纳,获得10
30秒前
30秒前
32秒前
anna1992发布了新的文献求助10
32秒前
35秒前
36秒前
阳阳阳完成签到,获得积分10
37秒前
Nora发布了新的文献求助20
38秒前
39秒前
39秒前
41秒前
深情安青应助要爱国采纳,获得10
42秒前
完美世界应助anna1992采纳,获得10
42秒前
42秒前
44秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
临床微生物检验问与答 (第二版), 人民卫生出版社, 2014:146 500
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351035
求助须知:如何正确求助?哪些是违规求助? 2976553
关于积分的说明 8675562
捐赠科研通 2657690
什么是DOI,文献DOI怎么找? 1455214
科研通“疑难数据库(出版商)”最低求助积分说明 673751
邀请新用户注册赠送积分活动 664242