Estimating crop genetic parameters for DSSAT with modified PEST software

DSSAT公司 有害生物分析 农学 作物 作物模拟模型 生物 植物
作者
Haijiao Ma,Robert W. Malone,Tengcong Jiang,Ning Yao,Shang Wen Chen,Libing Song,Hao Feng,Qiang Yu,Jianqiang He
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:115: 126017-126017 被引量:14
标识
DOI:10.1016/j.eja.2020.126017
摘要

Abstract Quickly determining accurate crop genetic parameters for crop model applications can be difficult. In this study, we coupled the independent automatic parameter optimization tool PEST (Parameter ESTimation) with the crop growth model of DSSAT (Decision Support System for Agrotechnology Transfer) using the R programming language. A new DSSAT-PEST package was developed to perform automatic optimization of the crop genetic parameters. In addition, the PEST tool was modified to reduce problems associated with local optima and model runtime. The DSSAT-PEST package was used to estimate the genetic coefficients for five crops (i.e., maize (Zea mays L.), soybean (Glycine max L. Merrill), wheat (Triticum aestivum L.), rice (Oryza sativa L.), and cotton (Gossypium hirsutum L.)) based on existing experiments in the DSSAT database. Three parameter optimization methods were compared based on their efficiency and accuracy for estimating crop genetic parameters: 1) the traditional trial-and-error method (default crop genetic parameters in the DSSAT database); 2) DSSAT-GLUE (general likelihood uncertainty estimation, an existing parameter estimation package in DSSAT), and 3) DSSAT-PEST. The DSSAT-PEST optimization method produced reasonably accurate optimization results and improved optimization efficiency compared with the other two methods. For example, the average absolute relative error (AREs) between relevant field observations and model simulations obtained with DSSAT-PEST were 12 %, 7 %, 18 %, 4 %, and 19 % for the five crops, respectively, which were similar to or better than the results with DSSAT-GLUE and the default method. Additionally, average runtime for DSSAT-PEST was about 65 % of the runtime for DSSAT-GLUE. In general, the DSSAT-PEST package performed similarly to or better than the traditional trial-and-error method and DSSAT-GLUE in terms of both optimization efficiency and accuracy, which should promote wider application of the DSSAT model in agricultural and environmental research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助大力出奇迹采纳,获得10
刚刚
1秒前
冬瓜鑫完成签到,获得积分10
1秒前
nb20发布了新的文献求助10
1秒前
香蕉觅云应助文艺的冬卉采纳,获得10
1秒前
Robin完成签到,获得积分10
2秒前
二十五发布了新的文献求助10
2秒前
orixero应助超级白昼采纳,获得10
2秒前
3秒前
3秒前
毛於菟完成签到,获得积分10
3秒前
乔123发布了新的文献求助10
3秒前
3秒前
清圆527完成签到,获得积分10
4秒前
4秒前
科目三应助Nightfall采纳,获得10
4秒前
5秒前
今后应助欣慰的小甜瓜采纳,获得10
5秒前
6秒前
柔弱的友瑶完成签到,获得积分10
6秒前
HAO关注了科研通微信公众号
7秒前
华姝发布了新的文献求助10
7秒前
ganzhongxin发布了新的文献求助10
8秒前
Robin发布了新的文献求助30
8秒前
拼搏的亦丝完成签到,获得积分10
8秒前
9秒前
帅帅完成签到,获得积分10
9秒前
良辰应助mmz666采纳,获得10
9秒前
落后的镜子完成签到,获得积分10
10秒前
Go发布了新的文献求助10
10秒前
11秒前
11秒前
斯文败类应助ew采纳,获得10
14秒前
清圆527发布了新的文献求助10
14秒前
李爱国应助华姝采纳,获得10
14秒前
rubyyyy完成签到 ,获得积分10
15秒前
科研通AI2S应助沙漠大雕采纳,获得10
15秒前
15秒前
开朗的风华完成签到,获得积分10
16秒前
颜颜发布了新的文献求助10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842155
求助须知:如何正确求助?哪些是违规求助? 3384295
关于积分的说明 10533896
捐赠科研通 3104642
什么是DOI,文献DOI怎么找? 1709781
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 774029