Electrical Characterization and Micro X-ray Computed Tomography Analysis of Next-Generation Silicon Alloy Lithium-Ion Cells

材料科学 锂(药物) 合金 表征(材料科学) 电解质 电压 开路电压 阳极 复合材料 化学工程 纳米技术 光电子学 电气工程 化学 电极 物理化学 内分泌学 工程类 医学
作者
Gert Berckmans,Lysander De Sutter,Algirdas Kersys,Ákos Kriston,Mario Marinaro,Michael Kasper,Peter Axmann,Jelle Smekens,Margret Wohlfahrt‐Mehrens,Andreas Pfrang,Joris Jaguemont,Joeri Van Mierlo,Noshin Omar
出处
期刊:World Electric Vehicle Journal [MDPI AG]
卷期号:9 (3): 43-43 被引量:29
标识
DOI:10.3390/wevj9030043
摘要

This study analyzed a prototype of a pouch cell containing silicon alloy anodes with the potential to significantly increase the energy density, resulting in improved autonomy for electric vehicles. An electrical characterization campaign was performed, resulting in three main observations. Firstly, measurements showed a high energy density, although a high lower cutoff voltage (3.0 V) was used due to the prototypical nature of the cells. Further optimization would allow a decrease of the lower cutoff voltage, resulting in an even higher energy density. Secondly, a large open-circuit voltage hysteresis was observed, increasing the complexity for equivalent circuit models. Thirdly, ballooning of the pouch cell was observed, most likely caused by gas formation. This leads to a loss of active surface area, significantly reducing the cell’s capacity. This third observation was more thoroughly investigated by 3D computed tomography, which showed mechanical deformation of the layers. An extensive literature review revealed that the addition of fluoroethylene carbonate (FEC) to the electrolyte enhances the cycling stability of silicon alloy batteries but leads to the production of CO 2 as a side reaction. Furthermore, the usage of external pressure was proposed and validated as a methodology to reduce the production of CO 2 while improving the cells’ performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hahaha发布了新的文献求助10
刚刚
结实的哈密瓜完成签到,获得积分10
1秒前
优秀的行云完成签到 ,获得积分10
1秒前
ohh完成签到,获得积分10
1秒前
thth完成签到,获得积分10
1秒前
ll完成签到,获得积分10
1秒前
Zz完成签到,获得积分20
2秒前
和谐灯泡完成签到,获得积分10
2秒前
3秒前
SciGPT应助huhu采纳,获得10
4秒前
kingwill应助rjhgh采纳,获得20
4秒前
cc完成签到,获得积分10
5秒前
明天要摆烂完成签到,获得积分10
6秒前
7秒前
9秒前
kx发布了新的文献求助10
9秒前
10秒前
Jasper应助Fiona采纳,获得10
12秒前
cc发布了新的文献求助10
13秒前
14秒前
苹果惜梦发布了新的文献求助10
14秒前
充电宝应助yangyang采纳,获得10
17秒前
18秒前
合适的致远完成签到,获得积分10
18秒前
18秒前
wanci应助少夫人采纳,获得10
18秒前
18秒前
小郭爱科研给小郭爱科研的求助进行了留言
19秒前
wanci应助李唯佳采纳,获得10
19秒前
20秒前
21秒前
21秒前
燕麦片完成签到 ,获得积分20
22秒前
23秒前
樊念烟发布了新的文献求助30
23秒前
整齐的泥猴桃完成签到 ,获得积分10
23秒前
111完成签到,获得积分10
24秒前
金蕊发布了新的文献求助30
25秒前
MG_aichy发布了新的文献求助10
25秒前
直率钢笔发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3551983
求助须知:如何正确求助?哪些是违规求助? 3128409
关于积分的说明 9377696
捐赠科研通 2827437
什么是DOI,文献DOI怎么找? 1554378
邀请新用户注册赠送积分活动 725463
科研通“疑难数据库(出版商)”最低求助积分说明 714884