Strain‐Induced Alignment Mechanisms of Carbon Nanotube Networks

纳米技术 拉伤 分子动力学
作者
Rebekah Downes,Shaokai Wang,David Haldane,Andrew Moench,Richard Liang
出处
期刊:Advanced Engineering Materials [Wiley]
卷期号:17 (3): 349-358 被引量:47
标识
DOI:10.1002/adem.201400045
摘要

Random networks comprised of millimeter-long multi-walled carbon nanotubes (CNTs) have shown unique microstructure change mechanisms under uniaxial strain. These networks can be modified into highly aligned microstructures from strain-induced plastic deformation. Applying a treatment consisting of an uncured resin as a load transfer enhancement medium leads to a dramatically increased degree of alignment and final mechanical properties of the CNT networks. The structural evolution of the CNT networks includes different modes: de-bundling, elongation to reduce waviness, sliding friction, and packing for self-assembly into large bundles. The high ductility of the treated networks, which allows the network to achieve high degrees of strain-induced alignment is mainly because the extra high aspect ratios of the individual CNT and their bundles as well as enhanced load transfer. High aspect ratio causes high degrees of entanglement and locking points between the nanotubes in the random network, which are critical to provide adequate nanotube to nanotube load transfer for ductile deformation and lead to substantially increased CNT alignment during mechanical stretching. The classical strain strengthening mechanisms used in metals and polymers such as strain hardening and crystallization of long molecular chains are discussed and compared to CNT network deformation mechanisms. The CNT network strain hardening parameter n value is as high as 0.65, over three times that of annealed low-carbon steel and more than four times of polycarbonate plastics. Strength coefficient K values for the CNT network also show high values up to roughly 450 MPa, comparable to that of annealed magnesium alloys. The results show how the high degree of alignment of CNT networks and strain strengthening can be achieved through simple uniaxial strain and load transfer medium.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
skf完成签到,获得积分10
1秒前
bkagyin应助战战采纳,获得10
1秒前
齐半青完成签到,获得积分10
2秒前
2秒前
阿斯顿发布了新的文献求助10
2秒前
billevans完成签到,获得积分10
3秒前
XHH1994完成签到,获得积分10
3秒前
张火火发布了新的文献求助20
3秒前
爆米花应助DYQin采纳,获得10
3秒前
mingyahaoa完成签到,获得积分10
3秒前
机灵的白筠完成签到,获得积分20
3秒前
CipherSage应助燕子采纳,获得30
3秒前
Accpted河豚发布了新的文献求助10
3秒前
BenLuo发布了新的文献求助30
4秒前
云歇雨住发布了新的文献求助10
4秒前
Oak完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
chen完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
光_sun完成签到,获得积分10
6秒前
腦內小劇場完成签到,获得积分10
6秒前
无花果应助徐xmr采纳,获得10
6秒前
6秒前
木木酱完成签到,获得积分10
7秒前
yuajianhei完成签到,获得积分10
7秒前
CNAxiaozhu7完成签到,获得积分10
7秒前
莫三颜发布了新的文献求助10
7秒前
7秒前
敢甘完成签到,获得积分10
7秒前
qqj发布了新的文献求助80
8秒前
DD发布了新的文献求助10
8秒前
微笑完成签到,获得积分10
9秒前
real_cy完成签到,获得积分10
9秒前
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969060
求助须知:如何正确求助?哪些是违规求助? 3513962
关于积分的说明 11171223
捐赠科研通 3249302
什么是DOI,文献DOI怎么找? 1794772
邀请新用户注册赠送积分活动 875377
科研通“疑难数据库(出版商)”最低求助积分说明 804769