电解质
材料科学
电池(电)
锂(药物)
电化学
聚合物
陶瓷
锂电池
化学工程
离子电导率
纳米技术
复合材料
电极
离子键合
化学
离子
有机化学
物理化学
功率(物理)
内分泌学
工程类
物理
医学
量子力学
作者
Hao Li,Mengjie Li,Sajid Hussain Siyal,Ming Zhu,Jinle Lan,Gang Sui,Yunhua Yu,Wei‐Hong Zhong,Xiaoping Yang
标识
DOI:10.1016/j.memsci.2018.03.038
摘要
Abstract The highest specific capacity (3860 mAh g−1) and minimum negative electrochemical potential make lithium metal as a perfect candidate for next-generation high energy battery. However, the safety issue caused by the lithium dendrite growth hinders the practical use of lithium metal battery. Herein, a polymer/polymer-ceramic/polymer sandwich structure electrolytes (SWEs) are proposed to address this problem by combing the advantage of inorganic and gel-type polymer electrolytes. The flexible SWEs show a high ionic conductivity (~3.01 ×10−3 S/cm) at room temperature, high lithium transference number (tLi+ = 0.74), and stable electrochemical widows up to 5.0 V. Furthermore, the SWEs can effectively prevent lithium dendrites in a symmetric Li/SWEs/Li test during charge and discharge with a current density of 1 mA/cm2 for 240 h at room temperature. Meanwhile, the lithium metal battery assembled using LiCoO2/SWEs/Li exhibits the high cycling capacity of ~ 110 mAh g−1 at 2 C over 100 cycles and fascinating rate performance (144 mAh g−1@ 1 C and 98 mAh g−1@ 5 C) at room temperature. Our work provides a new design paradigm to exploit the advanced electrolyte for lithium metal battery and flexible devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI