生物
基因
分子生物学
分子克隆
克隆(编程)
质粒
突变体
异源表达
打开阅读框
重组DNA
互补DNA
肽序列
毕赤酵母
同色链霉菌
作者
Jing Guo,Yi Wang,Gao Wenjun,Wang Xinrou,Gao Xin,Zaiwei Man,Zhiqiang Cai,Qing Qing
标识
DOI:10.1007/s12010-021-03687-6
摘要
A n
ovel glycoside hydrolase (GH) family 46 chitosanase (SaCsn46A) from Streptomyces avermitilis was cloned and functionally expressed in Escherichia coli Rosetta (DE3) strains. SaCsn46A consists of 271 amino acids, which includes a 34-amino acid signal peptide. The protein sequence of SaCsn46A shows maximum identity (83.5%) to chitosanase from Streptomyces sp. SirexAA-E. Then, the mature enzyme was purified to homogeneity through Ni-chelating affinity chromatography with a recovery yield of 78% and the molecular mass of purified enzyme was estimated to be 29 kDa by SDS-PAGE. The recombinant enzyme possessed a temperature optimum of 45 °C and a pH optimum of 6.2, and it was stable at pH ranging from 4.0 to 9.0 and below 30 °C. The Km and Vmax values of this enzyme were 1.32 mg/mL, 526.32 U/mg/min, respectively (chitosan as substrate). The enzyme activity can be enhanced by Mg2+ and especially Mn2+, which could enhance the activity about 3.62-fold at a 3-mM concentration. The enzyme can hydrolyze a variety of polysaccharides which are linked by β-1,4-glycosidic bonds such as chitin, xylan, and cellulose, but it could not hydrolyze polysaccharides linked by α-1,4-glycosidic bonds. The results of thin-layer chromatography and HPLC showed that the enzyme exhibited an endo-type cleavage pattern and could hydrolyze chitosan to glucosamine (GlcN) and (GlcN)2. This study demonstrated that SaCsn46A is a promising enzyme to produce glucosamine and chitooligosaccharides (COS) from chitosan.
科研通智能强力驱动
Strongly Powered by AbleSci AI