匹配追踪
算法
模棱两可
数学
高斯分布
最小均方误差
混合(物理)
后验概率
贝叶斯概率
基础(线性代数)
估计理论
集合(抽象数据类型)
匹配(统计)
选型
模式识别(心理学)
计算机科学
应用数学
统计
人工智能
量子力学
压缩传感
物理
估计员
程序设计语言
几何学
作者
Philip Schniter,Lee C. Potter,Justin Ziniel
标识
DOI:10.1109/ita.2008.4601068
摘要
A low-complexity recursive procedure is presented for minimum mean squared error (MMSE) estimation in linear regression models. A Gaussian mixture is chosen as the prior on the unknown parameter vector. The algorithm returns both an approximate MMSE estimate of the parameter vector and a set of high posterior probability mixing parameters. Emphasis is given to the case of a sparse parameter vector. Numerical simulations demonstrate estimation performance and illustrate the distinctions between MMSE estimation and MAP model selection. The set of high probability mixing parameters not only provides MAP basis selection, but also yields relative probabilities that reveal potential ambiguity in the sparse model.
科研通智能强力驱动
Strongly Powered by AbleSci AI