Enhancement of the Multiplexing Capacity and Measurement Accuracy of FBG Sensor System Using IWDM Technique and Deep Learning Algorithm

多路复用 无线传感器网络 光纤布拉格光栅 光纤传感器 计算机科学 算法 生存能力 电子工程 工程类 光纤 电信 计算机网络
作者
Yibeltal Chanie Manie,Peng‐Chun Peng,Run‐Kai Shiu,Yuan-Ta Hsu,Ya-Yu Chen,Guan-Ming Shao,Justin Chiu
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:38 (6): 1589-1603 被引量:43
标识
DOI:10.1109/jlt.2020.2971240
摘要

In this article, we are the first to propose deep learning algorithms for intensity wavelength division multiplexing (IWDM)-based self-healing fiber Bragg grating (FBG) sensor network. A deep learning algorithm is proposed to improve the accuracy of measuring the sensing signal of the sensor system. Furthermore, to increase the total number of FBG sensors multiplexed in the sensor network for multipoint measurements, a multiplexing technique called IWDM is proposed. The proposed IWDM-based ring structure FBG sensor network can also have a self-healing purpose to improve the sensor system's reliability and survivability. However, IWDM has unmeasurable gap or crosstalk problems when the number of FBG sensors increases, which causes high sensing signal measurement errors. To solve this problem, a gated recurrent unit (GRU) deep learning algorithm is proposed and experimentally demonstrated. To prove the sensing signal measurement performance of our proposed algorithm, we test the well-trained GRU model using two cases. The first case is when the spectra of FBGs are overlapped as well as the minimum intensity difference between FBGs is 10%, and the second case is when the spectra of FBGs are overlapped as well as the minimum intensity difference between FBGs is 3% which is a very small intensity difference. From the experimental results, the well-trained GRU algorithm achieves high strain sensing signal measurement performance in both cases compared to other algorithms. Therefore, the proposed IWDM based FBG sensor system using deep learning algorithm enhances the multiplexing capacity and survivability of the sensor system, reduces the computational time, and improves strain sensing signal measurement accuracy of FBGs even when FBGs has very small intensity difference and overlap problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
迷路白桃发布了新的文献求助20
刚刚
ZeJ完成签到,获得积分10
1秒前
景别发布了新的文献求助10
1秒前
1秒前
NexusExplorer应助陈莹采纳,获得10
2秒前
GXY发布了新的文献求助10
2秒前
嘟嘟发布了新的文献求助10
3秒前
5秒前
Akim应助单纯的雅香采纳,获得10
5秒前
6秒前
7秒前
成就的书包完成签到,获得积分10
8秒前
小疙瘩发布了新的文献求助10
8秒前
9秒前
metalmd发布了新的文献求助10
9秒前
9秒前
学术蠕虫发布了新的文献求助10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
sutharsons应助科研通管家采纳,获得30
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
XShu发布了新的文献求助10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得30
12秒前
传奇3应助科研通管家采纳,获得30
12秒前
Owen应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
文艺明杰发布了新的文献求助100
14秒前
所所应助嘟嘟采纳,获得10
14秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808