Enhancement of the Multiplexing Capacity and Measurement Accuracy of FBG Sensor System Using IWDM Technique and Deep Learning Algorithm

多路复用 无线传感器网络 光纤布拉格光栅 光纤传感器 计算机科学 算法 生存能力 电子工程 工程类 光纤 电信 计算机网络
作者
Yibeltal Chanie Manie,Peng‐Chun Peng,Run‐Kai Shiu,Yuan-Ta Hsu,Ya-Yu Chen,Guan-Ming Shao,Justin Chiu
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:38 (6): 1589-1603 被引量:43
标识
DOI:10.1109/jlt.2020.2971240
摘要

In this article, we are the first to propose deep learning algorithms for intensity wavelength division multiplexing (IWDM)-based self-healing fiber Bragg grating (FBG) sensor network. A deep learning algorithm is proposed to improve the accuracy of measuring the sensing signal of the sensor system. Furthermore, to increase the total number of FBG sensors multiplexed in the sensor network for multipoint measurements, a multiplexing technique called IWDM is proposed. The proposed IWDM-based ring structure FBG sensor network can also have a self-healing purpose to improve the sensor system's reliability and survivability. However, IWDM has unmeasurable gap or crosstalk problems when the number of FBG sensors increases, which causes high sensing signal measurement errors. To solve this problem, a gated recurrent unit (GRU) deep learning algorithm is proposed and experimentally demonstrated. To prove the sensing signal measurement performance of our proposed algorithm, we test the well-trained GRU model using two cases. The first case is when the spectra of FBGs are overlapped as well as the minimum intensity difference between FBGs is 10%, and the second case is when the spectra of FBGs are overlapped as well as the minimum intensity difference between FBGs is 3% which is a very small intensity difference. From the experimental results, the well-trained GRU algorithm achieves high strain sensing signal measurement performance in both cases compared to other algorithms. Therefore, the proposed IWDM based FBG sensor system using deep learning algorithm enhances the multiplexing capacity and survivability of the sensor system, reduces the computational time, and improves strain sensing signal measurement accuracy of FBGs even when FBGs has very small intensity difference and overlap problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Brian完成签到,获得积分10
2秒前
缓慢冥幽发布了新的文献求助10
2秒前
ang完成签到,获得积分10
3秒前
4秒前
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
纯情的天奇完成签到 ,获得积分10
5秒前
yangsi完成签到 ,获得积分10
5秒前
趙途嘵生完成签到,获得积分10
6秒前
腾腾完成签到 ,获得积分10
7秒前
落后访风完成签到,获得积分10
7秒前
曾经小伙完成签到 ,获得积分10
8秒前
沉静的乘风完成签到,获得积分10
9秒前
阿尔治完成签到,获得积分10
9秒前
研友_V8QBrL完成签到,获得积分10
9秒前
克偃统统完成签到 ,获得积分10
12秒前
en完成签到,获得积分10
13秒前
ha完成签到 ,获得积分10
13秒前
iuhgnor完成签到,获得积分10
14秒前
傲娇的云朵完成签到,获得积分10
16秒前
小包子完成签到,获得积分10
18秒前
CART汪完成签到,获得积分10
18秒前
云缘墨色完成签到 ,获得积分10
19秒前
scc完成签到,获得积分10
20秒前
叶落无痕、完成签到,获得积分10
20秒前
子春完成签到 ,获得积分10
21秒前
小乌龟完成签到,获得积分10
21秒前
高高的远山完成签到,获得积分10
22秒前
hahasun完成签到,获得积分10
22秒前
ZhouYW完成签到,获得积分0
23秒前
鱼女士完成签到,获得积分10
26秒前
余健完成签到,获得积分10
26秒前
海比天蓝完成签到,获得积分10
28秒前
开放素完成签到 ,获得积分10
28秒前
云墨完成签到 ,获得积分10
29秒前
闫佳美完成签到,获得积分10
29秒前
ittt完成签到,获得积分10
29秒前
于雪晴关注了科研通微信公众号
29秒前
33秒前
量子星尘发布了新的文献求助10
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008855
求助须知:如何正确求助?哪些是违规求助? 3548508
关于积分的说明 11299006
捐赠科研通 3283151
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811220