已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancement of the Multiplexing Capacity and Measurement Accuracy of FBG Sensor System Using IWDM Technique and Deep Learning Algorithm

多路复用 无线传感器网络 光纤布拉格光栅 光纤传感器 计算机科学 算法 生存能力 电子工程 工程类 光纤 电信 计算机网络
作者
Yibeltal Chanie Manie,Peng‐Chun Peng,Run‐Kai Shiu,Yuan-Ta Hsu,Ya-Yu Chen,Guan-Ming Shao,Justin Chiu
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:38 (6): 1589-1603 被引量:43
标识
DOI:10.1109/jlt.2020.2971240
摘要

In this article, we are the first to propose deep learning algorithms for intensity wavelength division multiplexing (IWDM)-based self-healing fiber Bragg grating (FBG) sensor network. A deep learning algorithm is proposed to improve the accuracy of measuring the sensing signal of the sensor system. Furthermore, to increase the total number of FBG sensors multiplexed in the sensor network for multipoint measurements, a multiplexing technique called IWDM is proposed. The proposed IWDM-based ring structure FBG sensor network can also have a self-healing purpose to improve the sensor system's reliability and survivability. However, IWDM has unmeasurable gap or crosstalk problems when the number of FBG sensors increases, which causes high sensing signal measurement errors. To solve this problem, a gated recurrent unit (GRU) deep learning algorithm is proposed and experimentally demonstrated. To prove the sensing signal measurement performance of our proposed algorithm, we test the well-trained GRU model using two cases. The first case is when the spectra of FBGs are overlapped as well as the minimum intensity difference between FBGs is 10%, and the second case is when the spectra of FBGs are overlapped as well as the minimum intensity difference between FBGs is 3% which is a very small intensity difference. From the experimental results, the well-trained GRU algorithm achieves high strain sensing signal measurement performance in both cases compared to other algorithms. Therefore, the proposed IWDM based FBG sensor system using deep learning algorithm enhances the multiplexing capacity and survivability of the sensor system, reduces the computational time, and improves strain sensing signal measurement accuracy of FBGs even when FBGs has very small intensity difference and overlap problem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助Tine采纳,获得10
刚刚
Hello应助小智采纳,获得10
1秒前
GingerF应助居居采纳,获得60
3秒前
6秒前
胡燕完成签到 ,获得积分10
7秒前
科研通AI6应助lmz99588082采纳,获得30
7秒前
8秒前
NexusExplorer应助85号竹叶青采纳,获得10
8秒前
王伟娟完成签到 ,获得积分10
8秒前
xwl完成签到,获得积分10
9秒前
11秒前
12秒前
今天放假了吗完成签到,获得积分10
12秒前
休斯顿完成签到,获得积分10
13秒前
三毛完成签到 ,获得积分10
13秒前
小太阳发布了新的文献求助10
13秒前
小智发布了新的文献求助10
15秒前
沧浪完成签到,获得积分10
17秒前
几甜完成签到 ,获得积分10
18秒前
慈祥的不愁完成签到,获得积分10
24秒前
李小伟完成签到,获得积分10
28秒前
年少丶完成签到,获得积分10
30秒前
清风完成签到 ,获得积分10
32秒前
鳗鱼艳一完成签到 ,获得积分20
33秒前
领导范儿应助李小伟采纳,获得10
34秒前
马佳音完成签到 ,获得积分10
34秒前
Ava应助几甜采纳,获得10
37秒前
谢謝完成签到,获得积分10
45秒前
swy发布了新的文献求助10
46秒前
杰哥完成签到 ,获得积分10
51秒前
loser完成签到 ,获得积分10
53秒前
英俊小鼠完成签到,获得积分10
1分钟前
1分钟前
1分钟前
青菜完成签到 ,获得积分10
1分钟前
swy完成签到 ,获得积分10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
淡定绮波应助科研通管家采纳,获得80
1分钟前
zeice完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528663
求助须知:如何正确求助?哪些是违规求助? 4618176
关于积分的说明 14562062
捐赠科研通 4556973
什么是DOI,文献DOI怎么找? 2497281
邀请新用户注册赠送积分活动 1477530
关于科研通互助平台的介绍 1448838