Enhancement of the Multiplexing Capacity and Measurement Accuracy of FBG Sensor System Using IWDM Technique and Deep Learning Algorithm

多路复用 无线传感器网络 光纤布拉格光栅 光纤传感器 计算机科学 算法 生存能力 电子工程 工程类 光纤 电信 计算机网络
作者
Yibeltal Chanie Manie,Peng‐Chun Peng,Run‐Kai Shiu,Yuan-Ta Hsu,Ya-Yu Chen,Guan-Ming Shao,Justin Chiu
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:38 (6): 1589-1603 被引量:43
标识
DOI:10.1109/jlt.2020.2971240
摘要

In this article, we are the first to propose deep learning algorithms for intensity wavelength division multiplexing (IWDM)-based self-healing fiber Bragg grating (FBG) sensor network. A deep learning algorithm is proposed to improve the accuracy of measuring the sensing signal of the sensor system. Furthermore, to increase the total number of FBG sensors multiplexed in the sensor network for multipoint measurements, a multiplexing technique called IWDM is proposed. The proposed IWDM-based ring structure FBG sensor network can also have a self-healing purpose to improve the sensor system's reliability and survivability. However, IWDM has unmeasurable gap or crosstalk problems when the number of FBG sensors increases, which causes high sensing signal measurement errors. To solve this problem, a gated recurrent unit (GRU) deep learning algorithm is proposed and experimentally demonstrated. To prove the sensing signal measurement performance of our proposed algorithm, we test the well-trained GRU model using two cases. The first case is when the spectra of FBGs are overlapped as well as the minimum intensity difference between FBGs is 10%, and the second case is when the spectra of FBGs are overlapped as well as the minimum intensity difference between FBGs is 3% which is a very small intensity difference. From the experimental results, the well-trained GRU algorithm achieves high strain sensing signal measurement performance in both cases compared to other algorithms. Therefore, the proposed IWDM based FBG sensor system using deep learning algorithm enhances the multiplexing capacity and survivability of the sensor system, reduces the computational time, and improves strain sensing signal measurement accuracy of FBGs even when FBGs has very small intensity difference and overlap problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuzhu完成签到,获得积分10
1秒前
星辰大海应助jiaolulu采纳,获得10
1秒前
2秒前
颖宝老公完成签到,获得积分0
2秒前
清爽夜雪完成签到,获得积分0
3秒前
量子星尘发布了新的文献求助10
3秒前
大翟完成签到,获得积分10
5秒前
不远完成签到,获得积分10
6秒前
冯珂完成签到 ,获得积分10
8秒前
Graham完成签到,获得积分10
8秒前
稳重乌冬面完成签到 ,获得积分10
10秒前
一苇以航完成签到 ,获得积分10
11秒前
戚雅柔完成签到 ,获得积分10
11秒前
vsvsgo完成签到,获得积分10
12秒前
米奇完成签到 ,获得积分10
12秒前
加一点荒谬完成签到,获得积分10
12秒前
12秒前
一一一给轻松白桃的求助进行了留言
14秒前
zz2905完成签到,获得积分10
14秒前
小超人完成签到 ,获得积分10
15秒前
香蕉初瑶完成签到,获得积分10
15秒前
meimei完成签到 ,获得积分10
15秒前
儒雅的菠萝吹雪完成签到,获得积分10
16秒前
16秒前
17秒前
水寒完成签到,获得积分10
17秒前
拉长的念珍完成签到,获得积分10
18秒前
大气夜山完成签到 ,获得积分10
18秒前
Tristan完成签到 ,获得积分10
20秒前
我思故我在完成签到,获得积分10
20秒前
21秒前
何浏亮完成签到,获得积分10
22秒前
阿成完成签到,获得积分10
22秒前
Pauline完成签到 ,获得积分10
22秒前
23秒前
微笑的语芙完成签到,获得积分10
23秒前
23秒前
小背包完成签到 ,获得积分10
23秒前
水寒发布了新的文献求助10
25秒前
希望天下0贩的0应助17采纳,获得10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022