Enhancement of the Multiplexing Capacity and Measurement Accuracy of FBG Sensor System Using IWDM Technique and Deep Learning Algorithm

多路复用 无线传感器网络 光纤布拉格光栅 光纤传感器 计算机科学 算法 生存能力 电子工程 工程类 光纤 电信 计算机网络
作者
Yibeltal Chanie Manie,Peng‐Chun Peng,Run‐Kai Shiu,Yuan-Ta Hsu,Ya-Yu Chen,Guan-Ming Shao,Justin Chiu
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:38 (6): 1589-1603 被引量:43
标识
DOI:10.1109/jlt.2020.2971240
摘要

In this article, we are the first to propose deep learning algorithms for intensity wavelength division multiplexing (IWDM)-based self-healing fiber Bragg grating (FBG) sensor network. A deep learning algorithm is proposed to improve the accuracy of measuring the sensing signal of the sensor system. Furthermore, to increase the total number of FBG sensors multiplexed in the sensor network for multipoint measurements, a multiplexing technique called IWDM is proposed. The proposed IWDM-based ring structure FBG sensor network can also have a self-healing purpose to improve the sensor system's reliability and survivability. However, IWDM has unmeasurable gap or crosstalk problems when the number of FBG sensors increases, which causes high sensing signal measurement errors. To solve this problem, a gated recurrent unit (GRU) deep learning algorithm is proposed and experimentally demonstrated. To prove the sensing signal measurement performance of our proposed algorithm, we test the well-trained GRU model using two cases. The first case is when the spectra of FBGs are overlapped as well as the minimum intensity difference between FBGs is 10%, and the second case is when the spectra of FBGs are overlapped as well as the minimum intensity difference between FBGs is 3% which is a very small intensity difference. From the experimental results, the well-trained GRU algorithm achieves high strain sensing signal measurement performance in both cases compared to other algorithms. Therefore, the proposed IWDM based FBG sensor system using deep learning algorithm enhances the multiplexing capacity and survivability of the sensor system, reduces the computational time, and improves strain sensing signal measurement accuracy of FBGs even when FBGs has very small intensity difference and overlap problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助郭翔采纳,获得10
刚刚
赘婿应助GoodMorning采纳,获得10
刚刚
科研通AI2S应助cece采纳,获得10
刚刚
1秒前
2秒前
Megan发布了新的文献求助30
2秒前
受伤问凝完成签到 ,获得积分10
2秒前
充电宝应助黄小鸟2333采纳,获得10
2秒前
2秒前
南医医发布了新的文献求助10
2秒前
乐事薯片噢完成签到,获得积分10
3秒前
3秒前
3秒前
烟花应助afrex采纳,获得10
3秒前
smm完成签到 ,获得积分10
4秒前
勤劳的鸡完成签到,获得积分10
4秒前
4秒前
JamesPei应助清萍红檀采纳,获得10
4秒前
5秒前
辅助成灾完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
milly完成签到,获得积分10
6秒前
舒适数据线应助waoller1采纳,获得10
6秒前
沸腾鱼应助waoller1采纳,获得10
6秒前
GY发布了新的文献求助10
6秒前
宁静致远完成签到,获得积分10
6秒前
ZHQ发布了新的文献求助10
7秒前
小火锅发布了新的文献求助10
7秒前
Ace发布了新的文献求助10
8秒前
朴实惜天发布了新的文献求助10
8秒前
tao完成签到,获得积分10
8秒前
9秒前
9秒前
nbing完成签到,获得积分10
9秒前
紫色de泡沫完成签到,获得积分10
10秒前
10秒前
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009765
求助须知:如何正确求助?哪些是违规求助? 3549723
关于积分的说明 11303208
捐赠科研通 3284239
什么是DOI,文献DOI怎么找? 1810545
邀请新用户注册赠送积分活动 886356
科研通“疑难数据库(出版商)”最低求助积分说明 811355