高光谱成像
模式识别(心理学)
人工智能
计算机科学
卷积神经网络
上下文图像分类
空间分析
像素
马尔可夫随机场
贝叶斯概率
水准点(测量)
图像分割
图像(数学)
数学
大地测量学
统计
地理
作者
Xiangyong Cao,Feng Zhou,Lin Xu,Deyu Meng,Zongben Xu,John Paisley
出处
期刊:IEEE transactions on image processing
[Institute of Electrical and Electronics Engineers]
日期:2018-01-29
卷期号:27 (5): 2354-2367
被引量:298
标识
DOI:10.1109/tip.2018.2799324
摘要
This paper presents a new supervised classification algorithm for remotely sensed hyperspectral image (HSI) which integrates spectral and spatial information in a unified Bayesian framework. First, we formulate the HSI classification problem from a Bayesian perspective. Then, we adopt a convolutional neural network (CNN) to learn the posterior class distributions using a patch-wise training strategy to better use the spatial information. Next, spatial information is further considered by placing a spatial smoothness prior on the labels. Finally, we iteratively update the CNN parameters using stochastic gradient decent and update the class labels of all pixel vectors using -expansion min-cut-based algorithm. Compared with the other state-of-the-art methods, the classification method achieves better performance on one synthetic data set and two benchmark HSI data sets in a number of experimental settings.
科研通智能强力驱动
Strongly Powered by AbleSci AI