数据包丢失
迭代学习控制
计算机科学
非线性系统
模型预测控制
趋同(经济学)
网络数据包
补偿(心理学)
事件(粒子物理)
跟踪误差
控制理论(社会学)
网络控制系统
控制(管理)
人工智能
计算机网络
物理
经济
量子力学
经济增长
心理学
精神分析
作者
Qiongxia Yu,Zhihao Fan,Xuhui Bu,Zhongsheng Hou
标识
DOI:10.1016/j.isatra.2024.03.001
摘要
In this paper, a novel event-triggered predictive iterative learning control (ET-PILC) method with random packet loss compensation (RPLC) mechanism is proposed for unknown nonlinear networked systems with random packet loss (RPL). First, a new RPLC mechanism is designed by utilizing both the historical and predictive data information to avoid the deterioration of control performance due to RPL. Then, a new event-triggered condition is designed based on the proposed RPLC mechanism to save communication resources and reduce computational burden. Moreover, the convergence of the modeling error and tracking control error are analyzed theoretically, and simulation results are given to demonstrate the effectiveness of the proposed method further.
科研通智能强力驱动
Strongly Powered by AbleSci AI