亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Micro-Expression Spotting Based on a Short-Duration Prior and Multi-Stage Feature Extraction

定位 计算机科学 模式识别(心理学) 判别式 人工智能 冗余(工程) 特征(语言学) 特征提取 定位关键字 表达式(计算机科学) 哲学 语言学 程序设计语言 操作系统
作者
Zhihua Xie,Sijia Cheng
出处
期刊:Electronics [MDPI AG]
卷期号:12 (2): 434-434
标识
DOI:10.3390/electronics12020434
摘要

When micro-expressions are mixed with normal or macro-expressions, it becomes increasingly challenging to spot them in long videos. Aiming at the specific time prior of micro-expressions (MEs), an ME spotting network called AEM-Net (adaptive enhanced ME detection network) is proposed. This paper is an extension of the conference paper presented at the Chinese Conference on Biometric Recognition (CCBR). The network improves spotting performance in the following five aspects. Firstly, a multi-stage channel feature extraction module is constructed to extract the features at different depths. Then, an attention spatial-temporal module is leveraged to obtain salient and discriminative micro-expression segments while suppressing the generation of excessively long or short suggestions. Thirdly, a ME-NMS (non-maximum suppression) network is developed to reduce redundancy and decision errors. Fourthly, a multi-scale feature fusion module is introduced to fuse up-sampling features of high-level maps and fine-grained information, which obtains meaningful information on feature distribution and contributes to a good representation of MEs. Finally, two spotting mechanisms named anchor-based and anchor free were integrated to get final spotting. Extensive experiments were conducted on prevalent CAS(ME)2 and the SAMM-Long ME databases to evaluate the spotting performance. The results show that the AEM-Net achieves competitive performance, outperforming other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li发布了新的文献求助20
2秒前
li完成签到,获得积分20
11秒前
13秒前
嘻嘻哈哈完成签到,获得积分10
25秒前
52秒前
55秒前
1分钟前
apple发布了新的文献求助10
1分钟前
1分钟前
Conner完成签到 ,获得积分10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
xxx发布了新的文献求助10
1分钟前
嵐酱布响堪论文完成签到,获得积分10
1分钟前
Jessica完成签到,获得积分10
2分钟前
2分钟前
3分钟前
aa111发布了新的文献求助10
3分钟前
完美世界应助aa111采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
maher应助科研通管家采纳,获得30
3分钟前
ZYP应助科研通管家采纳,获得10
3分钟前
3分钟前
科研启动发布了新的文献求助30
3分钟前
4分钟前
酷波er应助yahaahaaoo采纳,获得10
4分钟前
科研启动完成签到,获得积分10
4分钟前
科研通AI6应助xxx采纳,获得10
4分钟前
自信号厂完成签到 ,获得积分0
4分钟前
领导范儿应助nikuisi采纳,获得10
4分钟前
4分钟前
wew发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463313
求助须知:如何正确求助?哪些是违规求助? 4568049
关于积分的说明 14312357
捐赠科研通 4493975
什么是DOI,文献DOI怎么找? 2462050
邀请新用户注册赠送积分活动 1450987
关于科研通互助平台的介绍 1426221