Micro-Expression Spotting Based on a Short-Duration Prior and Multi-Stage Feature Extraction

定位 计算机科学 模式识别(心理学) 判别式 人工智能 冗余(工程) 特征(语言学) 特征提取 定位关键字 表达式(计算机科学) 语言学 操作系统 哲学 程序设计语言
作者
Zhihua Xie,Sijia Cheng
出处
期刊:Electronics [MDPI AG]
卷期号:12 (2): 434-434
标识
DOI:10.3390/electronics12020434
摘要

When micro-expressions are mixed with normal or macro-expressions, it becomes increasingly challenging to spot them in long videos. Aiming at the specific time prior of micro-expressions (MEs), an ME spotting network called AEM-Net (adaptive enhanced ME detection network) is proposed. This paper is an extension of the conference paper presented at the Chinese Conference on Biometric Recognition (CCBR). The network improves spotting performance in the following five aspects. Firstly, a multi-stage channel feature extraction module is constructed to extract the features at different depths. Then, an attention spatial-temporal module is leveraged to obtain salient and discriminative micro-expression segments while suppressing the generation of excessively long or short suggestions. Thirdly, a ME-NMS (non-maximum suppression) network is developed to reduce redundancy and decision errors. Fourthly, a multi-scale feature fusion module is introduced to fuse up-sampling features of high-level maps and fine-grained information, which obtains meaningful information on feature distribution and contributes to a good representation of MEs. Finally, two spotting mechanisms named anchor-based and anchor free were integrated to get final spotting. Extensive experiments were conducted on prevalent CAS(ME)2 and the SAMM-Long ME databases to evaluate the spotting performance. The results show that the AEM-Net achieves competitive performance, outperforming other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包容柜子发布了新的文献求助10
刚刚
唠叨的觅海完成签到,获得积分10
2秒前
蓝天发布了新的文献求助10
3秒前
wubinbin发布了新的文献求助10
3秒前
修骨匠人完成签到,获得积分10
4秒前
zhoumaoyuan发布了新的文献求助10
4秒前
脑洞疼应助echo采纳,获得10
4秒前
5秒前
领导范儿应助包容柜子采纳,获得10
6秒前
繁星完成签到 ,获得积分10
8秒前
10秒前
11秒前
似乎一场梦完成签到 ,获得积分10
11秒前
dio小面包完成签到 ,获得积分10
12秒前
13秒前
skylee完成签到,获得积分10
13秒前
14秒前
幸福小丸子完成签到,获得积分10
14秒前
困困包发布了新的文献求助10
16秒前
Xjx6519发布了新的文献求助10
17秒前
桐桐应助专注的水壶采纳,获得10
20秒前
斯文败类应助ZeZeZe采纳,获得10
20秒前
21秒前
情怀应助FUn采纳,获得10
22秒前
wanci应助Xjx6519采纳,获得10
23秒前
peng完成签到,获得积分10
24秒前
24秒前
26秒前
26秒前
张玮完成签到,获得积分20
33秒前
科研通AI6应助zhoumaoyuan采纳,获得10
34秒前
科研通AI6应助zhoumaoyuan采纳,获得10
34秒前
刻苦的元风完成签到,获得积分10
36秒前
37秒前
幽默滑板完成签到 ,获得积分10
40秒前
kei完成签到,获得积分10
42秒前
John_sdu完成签到,获得积分10
42秒前
43秒前
44秒前
寻道图强应助kingwill采纳,获得50
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566