Micro-Expression Spotting Based on a Short-Duration Prior and Multi-Stage Feature Extraction

定位 计算机科学 模式识别(心理学) 判别式 人工智能 冗余(工程) 特征(语言学) 特征提取 定位关键字 表达式(计算机科学) 语言学 操作系统 哲学 程序设计语言
作者
Zhihua Xie,Sijia Cheng
出处
期刊:Electronics [MDPI AG]
卷期号:12 (2): 434-434
标识
DOI:10.3390/electronics12020434
摘要

When micro-expressions are mixed with normal or macro-expressions, it becomes increasingly challenging to spot them in long videos. Aiming at the specific time prior of micro-expressions (MEs), an ME spotting network called AEM-Net (adaptive enhanced ME detection network) is proposed. This paper is an extension of the conference paper presented at the Chinese Conference on Biometric Recognition (CCBR). The network improves spotting performance in the following five aspects. Firstly, a multi-stage channel feature extraction module is constructed to extract the features at different depths. Then, an attention spatial-temporal module is leveraged to obtain salient and discriminative micro-expression segments while suppressing the generation of excessively long or short suggestions. Thirdly, a ME-NMS (non-maximum suppression) network is developed to reduce redundancy and decision errors. Fourthly, a multi-scale feature fusion module is introduced to fuse up-sampling features of high-level maps and fine-grained information, which obtains meaningful information on feature distribution and contributes to a good representation of MEs. Finally, two spotting mechanisms named anchor-based and anchor free were integrated to get final spotting. Extensive experiments were conducted on prevalent CAS(ME)2 and the SAMM-Long ME databases to evaluate the spotting performance. The results show that the AEM-Net achieves competitive performance, outperforming other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ocean完成签到,获得积分10
刚刚
郭6666完成签到,获得积分10
1秒前
llly发布了新的文献求助10
1秒前
沉默诗兰完成签到,获得积分10
1秒前
1秒前
zho发布了新的文献求助10
1秒前
科研人发布了新的文献求助10
2秒前
stoneff612发布了新的文献求助10
2秒前
3秒前
MarsXHXL发布了新的文献求助10
3秒前
栀尽夏完成签到,获得积分10
3秒前
无花果应助呼啦啦采纳,获得10
3秒前
3秒前
Yang完成签到,获得积分10
3秒前
萧东辰完成签到,获得积分10
3秒前
3秒前
活泼学生完成签到,获得积分10
3秒前
4秒前
Li完成签到,获得积分10
4秒前
轻松盼雁完成签到,获得积分10
4秒前
4秒前
包容寻芹完成签到,获得积分10
4秒前
lilyz615完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
1433223完成签到,获得积分10
5秒前
6秒前
LL完成签到,获得积分10
6秒前
可可完成签到,获得积分10
7秒前
momo应助小沫采纳,获得10
7秒前
英姑应助mafangfang采纳,获得10
7秒前
lisa完成签到,获得积分10
7秒前
llu完成签到,获得积分10
7秒前
眼睛大凤发布了新的文献求助10
7秒前
CipherSage应助清歌扶酒采纳,获得10
8秒前
li完成签到,获得积分10
9秒前
慕青应助熙怡采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017