Unraveling cell-cell communication with NicheNet by inferring active ligands from transcriptomics data

细胞 转录组 计算生物学 计算机科学 细胞生物学 生物 基因 遗传学 基因表达
作者
Chananchida Sang-aram,Robin Browaeys,Ruth Seurinck,Yvan Saeys
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.16358
摘要

Ligand-receptor interactions constitute a fundamental mechanism of cell-cell communication and signaling. NicheNet is a well-established computational tool that infers ligand-receptor interactions that potentially regulate gene expression changes in receiver cell populations. Whereas the original publication delves into the algorithm and validation, this paper describes a best practices workflow cultivated over four years of experience and user feedback. Starting from the input single-cell expression matrix, we describe a "sender-agnostic" approach which considers ligands from the entire microenvironment, and a "sender-focused" approach which only considers ligands from cell populations of interest. As output, users will obtain a list of prioritized ligands and their potential target genes, along with multiple visualizations. In NicheNet v2, we have updated the data sources and implemented a downstream procedure for prioritizing cell-type-specific ligand-receptor pairs. Although a standard NicheNet analysis takes less than 10 minutes to run, users often invest additional time in making decisions about the approach and parameters that best suit their biological question. This paper serves to aid in this decision-making process by describing the most appropriate workflow for common experimental designs like case-control and cell differentiation studies. Finally, in addition to the step-by-step description of the code, we also provide wrapper functions that enable the analysis to be run in one line of code, thus tailoring the workflow to users at all levels of computational proficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助赵雷采纳,获得10
刚刚
行走的鱼完成签到,获得积分10
刚刚
刚刚
渔舟唱晚发布了新的文献求助10
刚刚
heyang_2023发布了新的文献求助10
1秒前
wanli完成签到,获得积分10
1秒前
1秒前
紧张的似狮完成签到,获得积分10
1秒前
周周完成签到,获得积分10
1秒前
NexusExplorer应助舒心的紫南采纳,获得10
1秒前
隐形曼青应助westbobo采纳,获得10
1秒前
松绿格发布了新的文献求助10
1秒前
无私芒果完成签到 ,获得积分10
2秒前
2秒前
iNk应助王小西采纳,获得20
2秒前
2秒前
3秒前
QQ完成签到 ,获得积分10
3秒前
4秒前
俏皮短靴完成签到,获得积分10
4秒前
4秒前
zzt完成签到,获得积分10
4秒前
5秒前
DDDyr完成签到 ,获得积分10
5秒前
NexusExplorer应助LJX采纳,获得10
5秒前
小葵发布了新的文献求助10
5秒前
瓜里格瓜完成签到 ,获得积分10
5秒前
5秒前
brainxue发布了新的文献求助10
5秒前
ZZ0901完成签到,获得积分10
6秒前
6秒前
秋子发布了新的文献求助10
6秒前
6秒前
orixero应助我还是做条鱼吧采纳,获得10
7秒前
7秒前
东邪西毒加任我行完成签到,获得积分10
7秒前
AXUE发布了新的文献求助10
7秒前
赵雷完成签到,获得积分10
7秒前
领导范儿应助DM采纳,获得10
8秒前
俏皮短靴发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516843
求助须知:如何正确求助?哪些是违规求助? 3099028
关于积分的说明 9242843
捐赠科研通 2794309
什么是DOI,文献DOI怎么找? 1533384
邀请新用户注册赠送积分活动 712805
科研通“疑难数据库(出版商)”最低求助积分说明 707431