Unraveling cell-cell communication with NicheNet by inferring active ligands from transcriptomics data

细胞 转录组 计算生物学 计算机科学 细胞生物学 生物 基因 遗传学 基因表达
作者
Chananchida Sang-aram,Robin Browaeys,Ruth Seurinck,Yvan Saeys
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.16358
摘要

Ligand-receptor interactions constitute a fundamental mechanism of cell-cell communication and signaling. NicheNet is a well-established computational tool that infers ligand-receptor interactions that potentially regulate gene expression changes in receiver cell populations. Whereas the original publication delves into the algorithm and validation, this paper describes a best practices workflow cultivated over four years of experience and user feedback. Starting from the input single-cell expression matrix, we describe a "sender-agnostic" approach which considers ligands from the entire microenvironment, and a "sender-focused" approach which only considers ligands from cell populations of interest. As output, users will obtain a list of prioritized ligands and their potential target genes, along with multiple visualizations. In NicheNet v2, we have updated the data sources and implemented a downstream procedure for prioritizing cell-type-specific ligand-receptor pairs. Although a standard NicheNet analysis takes less than 10 minutes to run, users often invest additional time in making decisions about the approach and parameters that best suit their biological question. This paper serves to aid in this decision-making process by describing the most appropriate workflow for common experimental designs like case-control and cell differentiation studies. Finally, in addition to the step-by-step description of the code, we also provide wrapper functions that enable the analysis to be run in one line of code, thus tailoring the workflow to users at all levels of computational proficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光明磊落完成签到,获得积分10
1秒前
1秒前
科研通AI5应助阿媛呐采纳,获得10
1秒前
2秒前
2秒前
jy发布了新的文献求助10
2秒前
华仔应助端庄的萝采纳,获得10
2秒前
3秒前
3秒前
Franky发布了新的文献求助10
3秒前
4秒前
木木发布了新的文献求助10
4秒前
Dotgene发布了新的文献求助10
5秒前
酷波er应助无恃有恐采纳,获得10
5秒前
善学以致用应助好多鱼采纳,获得10
6秒前
在水一方应助Aganlin采纳,获得10
6秒前
脑洞疼应助xhj123采纳,获得10
6秒前
WJT_01完成签到,获得积分10
6秒前
6秒前
柔弱的无心完成签到,获得积分10
7秒前
7秒前
buguashushu完成签到,获得积分10
7秒前
hachi完成签到,获得积分10
8秒前
aaa发布了新的文献求助10
8秒前
9秒前
硬熊登场发布了新的文献求助10
9秒前
忐忑的黑猫应助二小采纳,获得10
9秒前
csz发布了新的文献求助10
9秒前
9秒前
zxh123发布了新的文献求助10
9秒前
10秒前
Common完成签到,获得积分10
10秒前
pluto应助11采纳,获得10
10秒前
10秒前
WilliamChan发布了新的文献求助10
10秒前
Franky完成签到,获得积分10
11秒前
完美世界应助zuoyou采纳,获得10
11秒前
12秒前
kkx发布了新的文献求助10
12秒前
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744192
求助须知:如何正确求助?哪些是违规求助? 3286904
关于积分的说明 10051959
捐赠科研通 3003151
什么是DOI,文献DOI怎么找? 1648864
邀请新用户注册赠送积分活动 784789
科研通“疑难数据库(出版商)”最低求助积分说明 750847