Aerobic exercise and scaffolds with hierarchical porosity synergistically promote functional recovery post volumetric muscle loss

脚手架 再生(生物学) 骨骼肌 肌肉组织 生物医学工程 纤维化 心肌细胞 材料科学 组织工程 医学 化学 解剖 病理 内科学 细胞生物学 生物
作者
Yori Endo,Mohamadmahdi Samandari,Mehran Karvar,Azadeh Mostafavi,Jacob Quint,Chiara Rinoldi,Iman K. Yazdi,Wojciech Święszkowski,Joshua R. Mauney,Shailesh Agarwal,Ali Tamayol,Indranil Sinha
出处
期刊:Biomaterials [Elsevier]
卷期号:296: 122058-122058 被引量:24
标识
DOI:10.1016/j.biomaterials.2023.122058
摘要

Volumetric muscle loss (VML), which refers to a composite skeletal muscle defect, most commonly heals by scarring and minimal muscle regeneration but substantial fibrosis. Current surgical interventions and physical therapy techniques are limited in restoring muscle function following VML. Novel tissue engineering strategies may offer an option to promote functional muscle recovery. The present study evaluates a colloidal scaffold with hierarchical porosity and controlled mechanical properties for the treatment of VML. In addition, as VML results in an acute decrease in insulin-like growth factor 1 (IGF-1), a myogenic factor, the scaffold was designed to slowly release IGF-1 following implantation. The foam-like scaffold is directly crosslinked onto remnant muscle without the need for suturing. In situ 3D printing of IGF-1-releasing porous muscle scaffold onto VML injuries resulted in robust tissue ingrowth, improved muscle repair, and increased muscle strength in a murine VML model. Histological analysis confirmed regeneration of new muscle in the engineered scaffolds. In addition, the scaffolds significantly reduced fibrosis and increased the expression of neuromuscular junctions in the newly regenerated tissue. Exercise training, when combined with the engineered scaffolds, augmented the treatment outcome in a synergistic fashion. These data suggest highly porous scaffolds and exercise therapy, in combination, may be a treatment option following VML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助浮华逝采纳,获得10
1秒前
小蘑菇应助优雅的盼夏采纳,获得10
2秒前
大个应助木槿采纳,获得10
2秒前
JamesPei应助张易笙采纳,获得30
2秒前
5秒前
6秒前
完美世界应助李梓权采纳,获得10
6秒前
费费Queen完成签到,获得积分10
6秒前
7秒前
autumn完成签到,获得积分20
7秒前
8秒前
姚姚发布了新的文献求助10
8秒前
彭于晏应助典雅的访天采纳,获得10
8秒前
双shuang发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
11秒前
11秒前
BetterH发布了新的文献求助10
12秒前
难难难发布了新的文献求助30
12秒前
田様应助凉逗听采纳,获得10
12秒前
13秒前
陈枇杷发布了新的文献求助10
13秒前
汉堡包应助hhj02采纳,获得10
13秒前
effortless完成签到,获得积分20
14秒前
14秒前
香蕉茹嫣完成签到,获得积分10
14秒前
15秒前
Paopaoxuan应助略略略采纳,获得10
15秒前
共享精神应助九思采纳,获得10
16秒前
录录发布了新的文献求助10
16秒前
17秒前
zhang@完成签到,获得积分10
18秒前
489发布了新的文献求助10
18秒前
Jack发布了新的文献求助10
18秒前
愉快的采波完成签到,获得积分10
18秒前
搜集达人应助坚强的寒风采纳,获得10
18秒前
18秒前
小斌驳回了顾矜应助
19秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470685
求助须知:如何正确求助?哪些是违规求助? 3063674
关于积分的说明 9084950
捐赠科研通 2754196
什么是DOI,文献DOI怎么找? 1511311
邀请新用户注册赠送积分活动 698363
科研通“疑难数据库(出版商)”最低求助积分说明 698253