亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mortality Prediction in Severe Traumatic Brain Injury Using Traditional and Machine Learning Algorithms

逻辑回归 创伤性脑损伤 机器学习 医学 支持向量机 置信区间 毒物控制 Lasso(编程语言) 算法 临床试验 统计的 人工智能 统计 急诊医学 内科学 计算机科学 数学 精神科 万维网
作者
Xiang Wu,Yuyao Sun,Xiao Xu,Ewout W. Steyerberg,Isabel R. A. Retel Helmrich,Fiona Lecky,Jianying Guo,Xiang Li,Junfeng Feng,Qing Mao,Guotong Xie,Andrew I.R. Maas,Guoyi Gao,Jiyao Jiang
出处
期刊:Journal of Neurotrauma [Mary Ann Liebert]
卷期号:40 (13-14): 1366-1375 被引量:18
标识
DOI:10.1089/neu.2022.0221
摘要

Abstract Prognostic prediction of traumatic brain injury (TBI) in patients is crucial in clinical decision and health care policy making. This study aimed to develop and validate prediction models for in-hospital mortality after severe traumatic brain injury (sTBI). We developed and validated logistic regression (LR), LASSO regression, and machine learning (ML) algorithms including support vector machines (SVM) and XGBoost models. Fifty-four candidate predictors were included. Model performance was expressed in terms of discrimination (C-statistic) and calibration (intercept and slope). For model development, 2804 patients with sTBI in the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) China Registry study were included. External validation was performed in 1113 patients with sTBI in the CENTER-TBI European Registry study. XGBoost achieved high discrimination in mortality prediction, and it outperformed logistic and LASSO regression. The XGBoost model established in this study also outperformed prediction models currently available, including the International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) core and International Mission for Prognosis and Analysis of Clinical Trials (CRASH) basic models. When including 54 variables, XGBoost and SVM reached C-statistics of 0.87 (95% confidence interval [CI]: 0.81-0.92) and 0.85 (95% CI: 0.79-0.90) at internal validation, and 0.88 (95% CI: 0.87-0.88) and 0.86 (95% CI: 0.85-0.87) at external validation, respectively. A simplified version of XGBoost and SVM using 26 variables selected by recursive feature elimination (RFE) reached C-statistics of 0.87 (95% CI: 0.82-0.92) and 0.86 (95% CI: 0.80-0.91) at internal validation, and 0.87 (95% CI: 0.87-0.88) and 0.87 (95% CI: 0.86-0.87) at external validation, respectively. However, when the number of variables included decreased, the difference between ML and LR diminished. All the prediction models can be accessed via a web-based calculator. Glasgow Coma Scale (GCS) score, age, pupillary light reflex, Injury Severity Score (ISS) for brain region, and the presence of acute subdural hematoma were the five strongest predictors for mortality prediction. The study showed that ML techniques such as XGBoost may capture information hidden in demographic and clinical predictors of patients with sTBI and yield more precise predictions compared with LR approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
本真完成签到,获得积分20
21秒前
23秒前
24秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
科目三应助方之双采纳,获得10
38秒前
49秒前
HHXYY完成签到,获得积分10
49秒前
57秒前
58秒前
1分钟前
1分钟前
1分钟前
rebeccahu应助白华苍松采纳,获得20
1分钟前
过时的笙发布了新的文献求助10
1分钟前
1分钟前
汉堡包应助过时的笙采纳,获得10
1分钟前
连安阳完成签到,获得积分10
1分钟前
2分钟前
2分钟前
3分钟前
可爱的大白菜真实的钥匙完成签到 ,获得积分10
3分钟前
努力努力再努力完成签到,获得积分10
3分钟前
木木完成签到 ,获得积分10
3分钟前
优秀的小馒头完成签到,获得积分10
3分钟前
3分钟前
SciGPT应助黎屿采纳,获得10
4分钟前
4分钟前
4分钟前
SciGPT应助科研通管家采纳,获得30
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
黎屿发布了新的文献求助10
5分钟前
张根山发布了新的文献求助30
5分钟前
6分钟前
张根山完成签到,获得积分10
6分钟前
6分钟前
英俊的铭应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413375
求助须知:如何正确求助?哪些是违规求助? 3015697
关于积分的说明 8871632
捐赠科研通 2703387
什么是DOI,文献DOI怎么找? 1482256
科研通“疑难数据库(出版商)”最低求助积分说明 685170
邀请新用户注册赠送积分活动 679951