Boosting Electrochemical Nitrate Reduction at Low Concentrations Through Simultaneous Electronic States Regulation and Proton Provision

吸附 电化学 硝酸盐 离解(化学) 水溶液 材料科学 电子转移 无机化学 化学 光化学 电极 有机化学 物理化学
作者
Wenlin Zhang,Yuzhuo Zhou,Yong Zhu,Yabo Guo,Bo Zhang,Lu‐Hua Zhang,Fei Li,Fengshou Yu
出处
期刊:Small [Wiley]
卷期号:20 (43) 被引量:1
标识
DOI:10.1002/smll.202404792
摘要

Abstract Electrochemically converting nitrate (NO 3 − ) into ammonia (NH 3 ) has emerged as an alternative strategy for NH 3 production and effluent treatment. Nevertheless, the electroreduction of dilute NO 3 − is still challenging due to the competitive adsorption between various aqueous species and NO 3 − , and unfavorable water dissociation providing * H. Herein, a new tandem strategy is proposed to boost the electrochemical nitrate reduction reaction (NO 3 RR) performance of Cu nanoparticles supported on single Fe atoms dispersed N‐doped carbon (Cu@Fe 1 ‐NC) at dilute NO 3 − concentrations (≤100 ppm NO 3 − ‐N). The optimized Cu@Fe 1 ‐NC presents a FE NH3 of 97.7% at −0.4 V versus RHE, and a significant NH 3 yield of 1953.9 mmol h −1 g Cu −1 at 100 ppm NO 3 − ‐N, a record‐high activity for dilute NO 3 RR. The metal/carbon heterojunctions in Cu@Fe 1 ‐NC enable a spontaneous electron transfer from Cu to carbon substrate, resulting in electron‐deficient Cu. As a result, the electron‐deficient Cu facilitates the adsorption of NO 3 − compared with the pristine Cu. The adjacent atomic Fe sites efficiently promote water dissociation, providing abundant * H for the hydrogenation of * NO x e at Cu sites. The synergistic effects between Cu and single Fe atom sites simultaneously decrease the energy barrier for NO 3 − adsorption and hydrogenation, thereby enhancing the overall activity of NO 3 − reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助mimi采纳,获得10
1秒前
学术小菜鸟完成签到 ,获得积分10
1秒前
1秒前
真实的俊驰完成签到,获得积分10
1秒前
平淡的蜻蜓完成签到,获得积分10
2秒前
2秒前
Vii应助宋宋宋2采纳,获得10
3秒前
胡天萌发布了新的文献求助10
4秒前
Grinder完成签到 ,获得积分10
5秒前
MADKAI发布了新的文献求助20
5秒前
圆滑的铁勺完成签到,获得积分10
6秒前
6秒前
6秒前
zhangting完成签到,获得积分10
7秒前
AAAAAAAAAAA完成签到,获得积分10
7秒前
vvvvvvv完成签到,获得积分10
7秒前
7秒前
wanyanjin应助1111采纳,获得10
7秒前
gaos发布了新的文献求助10
8秒前
小吴完成签到,获得积分10
9秒前
迟大猫应助Star1983采纳,获得10
9秒前
chinning完成签到,获得积分10
10秒前
Mon_zh发布了新的文献求助20
10秒前
10秒前
漂亮送终完成签到,获得积分10
10秒前
朴素篮球发布了新的文献求助10
11秒前
天才完成签到 ,获得积分10
11秒前
不喝可乐发布了新的文献求助10
11秒前
12秒前
皮尤尤发布了新的文献求助10
12秒前
13秒前
道中道完成签到,获得积分10
14秒前
14秒前
知之然完成签到,获得积分10
14秒前
研友_n2QP2L完成签到,获得积分10
14秒前
Lucas应助安静听白采纳,获得10
14秒前
CC发布了新的文献求助10
14秒前
星辰大海应助系统提示采纳,获得10
15秒前
15秒前
sss完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678