Label-free detection of bladder cancer and kidney cancer plasma based on SERS and multivariate statistical algorithm

肾癌 膀胱癌 癌症 化学 线性判别分析 主成分分析 接收机工作特性 多元分析 支持向量机 医学 人工智能 内科学 计算机科学
作者
Xin Bai,Juqiang Lin,Xiang Hua Wu,Yamin Lin,Xin Zhao,Weiwei Du,Jiamin Gao,Zeqin Hu,Qingjiang Xu,Tao Li,Yun Yu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:279: 121336-121336 被引量:18
标识
DOI:10.1016/j.saa.2022.121336
摘要

In this study, we mainly aimed to investigate the diagnostic potential of surface-enhanced Raman spectroscopy for bladder cancer and kidney cancer which are the most common cancers of the urinary system, and evaluate the classification ability of three statistical algorithms: principal component analysis-linear discriminate analysis (PCA-LDA), partial least square-random forest (PLS-RF), and partial least square-support vector machine (PLS-SVM). The plasma of 26 bladder cancer patients, 38 kidney cancer patients and 39 normal subjects was mixed with the same volume of silver nanoparticles, respectively, and then high-quality SERS signal was obtained. The SERS spectra in the range of 400-1800 cm-1 were compared and analyzed. There were some significant differences in SERS peak intensity, which may reflect the changes in the content of some biomacromolecules in the plasma of cancer patients. Based on the three algorithms of PCA-LDA, PLS-RF and PLS-SVM, the classification accuracy of SERS spectra of plasma from cancer patients and normal subjects was 98.1%, 100% and 100%, respectively. In addition, the classification accuracy of the three diagnostic algorithms to classify the SERS spectra of bladder cancer and kidney cancer was 81.3%, 91.7%, and 98.4%, respectively. This exploratory work demonstrates that SERS combined with PLS-SVM algorithm has superior performance for clinical screening of bladder cancer and kidney cancer through peripheral plasma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助111采纳,获得10
3秒前
丘比特应助tkp采纳,获得10
4秒前
4秒前
7秒前
1762120发布了新的文献求助10
8秒前
Ricky小强完成签到,获得积分10
9秒前
留意完成签到 ,获得积分10
9秒前
彩色的沂完成签到,获得积分10
10秒前
10秒前
俭朴的可冥应助自觉闭月采纳,获得10
10秒前
wanci应助萤火虫采纳,获得10
11秒前
科研通AI2S应助諵十一采纳,获得10
11秒前
李宏梅完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
14秒前
zg发布了新的文献求助10
15秒前
pluto应助狄百招采纳,获得10
16秒前
tutu发布了新的文献求助10
16秒前
taoze发布了新的文献求助10
17秒前
泽栋发布了新的文献求助10
17秒前
18秒前
李爱国应助张博采纳,获得10
18秒前
颀一一完成签到,获得积分10
19秒前
19秒前
20秒前
owoow发布了新的文献求助10
21秒前
21秒前
高源完成签到,获得积分20
21秒前
Skywalker完成签到,获得积分10
22秒前
23秒前
YZT8848完成签到,获得积分10
24秒前
24秒前
25秒前
tkp发布了新的文献求助10
26秒前
今后应助泽栋采纳,获得10
26秒前
28秒前
Christina完成签到,获得积分10
28秒前
shin2333发布了新的文献求助10
28秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125050
求助须知:如何正确求助?哪些是违规求助? 2775348
关于积分的说明 7726300
捐赠科研通 2430919
什么是DOI,文献DOI怎么找? 1291479
科研通“疑难数据库(出版商)”最低求助积分说明 622162
版权声明 600344