Personalized trajectory privacy data publishing scheme based on differential privacy

差别隐私 计算机科学 弹道 数据发布 隐私软件 信息隐私 隐私保护 计算机安全 方案(数学) 信息敏感性 数据挖掘 互联网隐私 出版 数学 数学分析 物理 天文 政治学 法学
作者
Peiqian Liu,Duoduo Wu,Zihao Shen,Hui Wang,Kun Liu
出处
期刊:Internet of things [Elsevier]
卷期号:25: 101074-101074 被引量:3
标识
DOI:10.1016/j.iot.2024.101074
摘要

The proliferation of smart devices with location-based services has significantly facilitated people's lives and generated a large amount of trajectory data. Analyzing this data can contribute to societal development, such as the construction of public facilities and intelligent transportation systems. But illegal leakage of data poses a serious threat to individual privacy within the released data. Currently, differential privacy technology has emerged as a rigorous and standardized privacy protection framework widely applied in trajectory data publishing. However, existing methods often suffer from either excessive privacy protection or insufficient protection of individual privacy. Therefore, this paper proposes a personalized trajectory privacy data protection scheme based on differential privacy (DP_SR). The scheme combines TF-IDF statistics and designs personalized exponential noise to protect the sensitive personal data in each trajectory, achieving personalized privacy protection. Then an RTF-tree is constructed, and differential privacy techniques are employed to safeguard the security of the entire trajectory dataset. Experimental results on two real trajectory dataset demonstrate that the proposed scheme achieves a better balance between privacy protection and data utility compared with state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
沈佳琪发布了新的文献求助10
2秒前
2秒前
热情芝麻应助边边玥铭采纳,获得10
2秒前
小Y完成签到 ,获得积分10
2秒前
3秒前
4秒前
4秒前
4秒前
小王完成签到,获得积分10
6秒前
领导范儿应助Ploaris采纳,获得10
6秒前
7秒前
李女士发布了新的文献求助10
8秒前
生信好难发布了新的文献求助10
9秒前
NexusExplorer应助zhangmengru采纳,获得30
9秒前
在水一方应助俭朴的猫咪采纳,获得10
9秒前
大模型应助烂漫的寻冬采纳,获得10
10秒前
JamesPei应助崔冶采纳,获得10
11秒前
小罗黑的完成签到,获得积分10
12秒前
梁liang完成签到,获得积分10
13秒前
科研通AI2S应助reck采纳,获得10
14秒前
14秒前
15秒前
16秒前
LL完成签到,获得积分10
16秒前
小野菌完成签到,获得积分10
16秒前
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
18秒前
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
我是老大应助肉片牛帅帅采纳,获得50
18秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479351
求助须知:如何正确求助?哪些是违规求助? 3070006
关于积分的说明 9116371
捐赠科研通 2761742
什么是DOI,文献DOI怎么找? 1515526
邀请新用户注册赠送积分活动 700958
科研通“疑难数据库(出版商)”最低求助积分说明 699951