Adaptive weighted generative adversarial network with attention mechanism: A transfer data augmentation method for tool wear prediction

生成语法 对抗制 机制(生物学) 计算机科学 生成对抗网络 人工智能 人工神经网络 机器学习 数据挖掘 深度学习 哲学 认识论
作者
Jianliang He,Yadong Xu,Yi Pan,Yulin Wang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:212: 111288-111288 被引量:7
标识
DOI:10.1016/j.ymssp.2024.111288
摘要

The on-machine monitoring of tool wear is of great significance to improve the machining efficiency and reliability of CNC machine tools. Although numerous approaches have been developed for condition monitoring of milling tool, two major problems still exist: (a) The actual manufacturing data is complicated due to the different combinations of the cutting speed, cutting feed, and depth of cut. (b) Abnormal data collection is extremely expensive and difficult to obtain. To fully explore the transferable wear-related information from multi-source data, an attention-based cross-domain generative adversarial network is developed in this study. First, an adaptive weighted feature selection network based on attention mechanism is established to extract shared features from source and target domain. Second, an auxiliary classifier generative adversarial network is introduced to utilize the shared features for transfer data augmentation. Finally, a new objective function of generative adversarial network's discriminator is built with correlation alignment regularization term to further utilize the wear-related information for improving the accuracy of tool wear prediction. Experiments are conducted on a machine tool to verify the effectiveness of the proposed cross-domain adaptive generation adversarial network based on the attention mechanism (CDAGAN) method. The results show that the proposed method can identify different tool wear states and capture the specific tool wear frequency feature on multi-machining parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
monkey发布了新的文献求助10
刚刚
Abby完成签到 ,获得积分10
2秒前
Gsamber完成签到,获得积分10
3秒前
4秒前
5秒前
33应助dan1029采纳,获得10
7秒前
净禅应助dan1029采纳,获得10
7秒前
33应助dan1029采纳,获得10
7秒前
净禅应助dan1029采纳,获得10
7秒前
33应助dan1029采纳,获得10
7秒前
33应助dan1029采纳,获得10
7秒前
33应助dan1029采纳,获得10
8秒前
33应助dan1029采纳,获得10
8秒前
33应助dan1029采纳,获得10
8秒前
yunxiao完成签到 ,获得积分10
8秒前
丁一一完成签到 ,获得积分10
11秒前
NexusExplorer应助顺利鸡采纳,获得10
14秒前
15秒前
seal发布了新的文献求助10
18秒前
cdqiu发布了新的文献求助10
19秒前
dear_xiaokuan完成签到,获得积分10
21秒前
monkey完成签到,获得积分10
21秒前
晨晨完成签到 ,获得积分10
21秒前
24秒前
清爽达完成签到 ,获得积分10
24秒前
自由质数完成签到,获得积分10
29秒前
Kashing发布了新的文献求助10
30秒前
大喜子完成签到,获得积分10
30秒前
田様应助Pristine采纳,获得10
31秒前
gujianhua发布了新的文献求助10
34秒前
木头完成签到,获得积分10
35秒前
36秒前
崔尔蓉发布了新的文献求助10
37秒前
guoll发布了新的文献求助30
38秒前
43秒前
桐桐应助dear_xiaokuan采纳,获得10
46秒前
47秒前
慕青应助Kashing采纳,获得30
48秒前
机灵鹌鹑完成签到 ,获得积分10
54秒前
phylicia完成签到 ,获得积分10
56秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Metal Additive Manufacturing for Propulsion Applications 600
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3366778
求助须知:如何正确求助?哪些是违规求助? 2986613
关于积分的说明 8723485
捐赠科研通 2669091
什么是DOI,文献DOI怎么找? 1461777
科研通“疑难数据库(出版商)”最低求助积分说明 676583
邀请新用户注册赠送积分活动 667809