材料科学
锂(药物)
阳极
氧气
储能
化学工程
析氧
介孔材料
纳米技术
电化学
电极
工程类
催化作用
物理化学
有机化学
医学
量子力学
物理
内分泌学
功率(物理)
化学
生物化学
作者
Xiangyu Wen,Xingbao Zhu,Xing Tang,Yuanguo Wu,Yu Wang,Zining Man,Weiting Qi,Jiaqi Wang,Zhe Lv
出处
期刊:Nano Energy
[Elsevier BV]
日期:2024-02-16
卷期号:123: 109405-109405
被引量:5
标识
DOI:10.1016/j.nanoen.2024.109405
摘要
At this moment, non-aqueous rechargeable lithium-oxygen batteries (LOBs) with extremely high energy density are regarded as the most viable energy storage devices to potentially replace petroleum. One of the most crucial impediments to their implementation has been ensuring facile oxygen availability. Moreover, as semi-sealed systems, LOBs have confronted challenges including oxygen impurities, product degradation, anode corrosion, frequent side reactions, and mediocre cycling performance. In this work, utilizing the physical adsorption of porous (micro-, meso- and macro-porous) solid carbon materials, we incorporate an oxygen storage layer (OSL) with reversible oxygen ad/desorption capabilities into a LOB to develop novel fully-sealed lithium-oxygen batteries (F-S-LOBs). The results demonstrate mesoporous carbons exhibit optimal oxygen adsorption/desorption kinetics, rendering them highly suitable for F-S-LOBs without developing complex oxygen-permeable membranes or carrying oxygen tanks. The OSL fabricated with mesoporous carbon can sustain battery charge/discharge at various current densities with exceptional cycling performance. Additionally, we provide approximate pore size guidelines for oxygen storage materials to aid future research. This study is anticipated to offer a new robust research direction for metal-air batteries and to forge a new path toward promoting the commercialization and development of this technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI