A Rolling Bearing Fault Diagnosis Method Based on Generalized Dataset Realizing Small Sample Transfer Learning

方位(导航) 断层(地质) 样品(材料) 学习迁移 计算机科学 人工智能 模式识别(心理学) 机器学习 地质学 地震学 化学 色谱法
作者
Zhixin Cai,Yuwei Liu,Weidong Zhang,Tong Zhao
标识
DOI:10.1109/rcae59706.2023.10398828
摘要

Aiming at the shortcomings of the traditional bearing fault diagnosis technology field, a rolling bearing fault diagnosis method based on the generalized dataset is used to realize small sample transfer learning. Firstly, the generalized dataset is used as the source domain to train the Resent model, and Dropout and regularization mechanisms are added to improve the model learning ability; then the real rolling bearing fault data samples are classified and numbered, and the two-dimensional time-frequency maps of the fault vibration signals are obtained by the wavelet transform; Finally, mean squared error (MSE) and structural similarity (SSIM) were used to analyze the number of layers of frozen layers, and the real fault dataset is imported into the improved ResNet model as the training domain for transfer learning, so as to establish a rolling bearing fault diagnosis model based on the generalized dataset to realize the transfer learning of small samples. Validation is carrying out through the bearing fault dataset of Case Western Churches University (CWRU), and the results show that the accuracy of fault diagnosis of the proposed method reaches more than 95% after transfer learning. It is proved that the method can effectively improve the accuracy of bearing fault diagnosis and provide an effective diagnostic tool for realizing the self-diagnosis function of intelligent bearings. Different from other papers that use a single method to improve the network or migrate only to the same domain for small-sample problems, this paper uses parameters such as Dropout and L2 regularization and mean square error to improve the network, and conducts cross-domain experiments on the source domain in the transfer of small-sample problems, and the final training accuracy rate is significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秦天与发布了新的文献求助10
刚刚
852应助豪哥真爱科研采纳,获得10
1秒前
sam完成签到,获得积分10
1秒前
1秒前
田様应助悦耳半雪采纳,获得10
1秒前
2秒前
小小智发布了新的文献求助10
2秒前
白白发布了新的文献求助10
2秒前
36456657应助千面追风采纳,获得10
2秒前
3秒前
LuoJiajun完成签到,获得积分10
3秒前
点点完成签到,获得积分10
3秒前
共享精神应助划一道掌纹采纳,获得10
4秒前
guozizi发布了新的文献求助10
4秒前
温暖的衣发布了新的文献求助10
4秒前
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
wanci应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Q11发布了新的文献求助10
5秒前
7秒前
7秒前
Aurora完成签到,获得积分10
8秒前
孤独的柠檬完成签到,获得积分20
8秒前
pb完成签到,获得积分10
8秒前
8秒前
星威应助WW采纳,获得20
8秒前
我不是BOB应助简单酒窝采纳,获得50
9秒前
杨y123发布了新的文献求助10
9秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474464
求助须知:如何正确求助?哪些是违规求助? 3066697
关于积分的说明 9100406
捐赠科研通 2758051
什么是DOI,文献DOI怎么找? 1513292
邀请新用户注册赠送积分活动 699484
科研通“疑难数据库(出版商)”最低求助积分说明 698995