A Rolling Bearing Fault Diagnosis Method Based on Generalized Dataset Realizing Small Sample Transfer Learning

方位(导航) 断层(地质) 样品(材料) 学习迁移 计算机科学 人工智能 模式识别(心理学) 机器学习 地质学 地震学 化学 色谱法
作者
Zhixin Cai,Yuwei Liu,Weidong Zhang,Tong Zhao
标识
DOI:10.1109/rcae59706.2023.10398828
摘要

Aiming at the shortcomings of the traditional bearing fault diagnosis technology field, a rolling bearing fault diagnosis method based on the generalized dataset is used to realize small sample transfer learning. Firstly, the generalized dataset is used as the source domain to train the Resent model, and Dropout and regularization mechanisms are added to improve the model learning ability; then the real rolling bearing fault data samples are classified and numbered, and the two-dimensional time-frequency maps of the fault vibration signals are obtained by the wavelet transform; Finally, mean squared error (MSE) and structural similarity (SSIM) were used to analyze the number of layers of frozen layers, and the real fault dataset is imported into the improved ResNet model as the training domain for transfer learning, so as to establish a rolling bearing fault diagnosis model based on the generalized dataset to realize the transfer learning of small samples. Validation is carrying out through the bearing fault dataset of Case Western Churches University (CWRU), and the results show that the accuracy of fault diagnosis of the proposed method reaches more than 95% after transfer learning. It is proved that the method can effectively improve the accuracy of bearing fault diagnosis and provide an effective diagnostic tool for realizing the self-diagnosis function of intelligent bearings. Different from other papers that use a single method to improve the network or migrate only to the same domain for small-sample problems, this paper uses parameters such as Dropout and L2 regularization and mean square error to improve the network, and conducts cross-domain experiments on the source domain in the transfer of small-sample problems, and the final training accuracy rate is significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助大橙子采纳,获得10
1秒前
普鲁卡因发布了新的文献求助10
3秒前
积极的帽子完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
5秒前
现代冷松完成签到,获得积分10
8秒前
Chimmy完成签到,获得积分10
13秒前
朴树朋友完成签到,获得积分20
13秒前
wlnhyF完成签到,获得积分10
15秒前
pursuit完成签到,获得积分10
18秒前
Neltharion完成签到,获得积分10
19秒前
沈海完成签到,获得积分10
21秒前
悦耳傥完成签到 ,获得积分10
21秒前
一叶知秋应助大橙子采纳,获得10
21秒前
科研小能手完成签到,获得积分10
22秒前
guoxingliu发布了新的文献求助200
23秒前
Double_N完成签到,获得积分10
26秒前
路路完成签到 ,获得积分10
27秒前
碧蓝的盼夏完成签到,获得积分10
31秒前
AU完成签到 ,获得积分10
32秒前
研友_yLpYkn完成签到,获得积分10
33秒前
兴奋的定帮完成签到 ,获得积分0
34秒前
一叶知秋应助大橙子采纳,获得10
35秒前
36秒前
金蛋蛋完成签到 ,获得积分10
36秒前
马琛尧完成签到 ,获得积分10
38秒前
一行白鹭上青天完成签到 ,获得积分10
42秒前
帅气的宽完成签到 ,获得积分10
43秒前
lixoii完成签到 ,获得积分10
45秒前
萌萌许完成签到,获得积分10
45秒前
sunce1990完成签到 ,获得积分10
48秒前
Bin_Liu完成签到,获得积分20
49秒前
宇老师完成签到,获得积分10
49秒前
研友_VZG7GZ应助马琛尧采纳,获得10
50秒前
安安的小板栗完成签到,获得积分10
53秒前
123_完成签到,获得积分10
55秒前
NexusExplorer应助大橙子采纳,获得10
56秒前
上善若水完成签到 ,获得积分10
58秒前
qiqi发布了新的文献求助10
1分钟前
1分钟前
英俊的铭应助cm采纳,获得10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022