A Rolling Bearing Fault Diagnosis Method Based on Generalized Dataset Realizing Small Sample Transfer Learning

方位(导航) 断层(地质) 样品(材料) 学习迁移 计算机科学 人工智能 模式识别(心理学) 机器学习 地质学 地震学 化学 色谱法
作者
Zhixin Cai,Yuwei Liu,Weidong Zhang,Tong Zhao
标识
DOI:10.1109/rcae59706.2023.10398828
摘要

Aiming at the shortcomings of the traditional bearing fault diagnosis technology field, a rolling bearing fault diagnosis method based on the generalized dataset is used to realize small sample transfer learning. Firstly, the generalized dataset is used as the source domain to train the Resent model, and Dropout and regularization mechanisms are added to improve the model learning ability; then the real rolling bearing fault data samples are classified and numbered, and the two-dimensional time-frequency maps of the fault vibration signals are obtained by the wavelet transform; Finally, mean squared error (MSE) and structural similarity (SSIM) were used to analyze the number of layers of frozen layers, and the real fault dataset is imported into the improved ResNet model as the training domain for transfer learning, so as to establish a rolling bearing fault diagnosis model based on the generalized dataset to realize the transfer learning of small samples. Validation is carrying out through the bearing fault dataset of Case Western Churches University (CWRU), and the results show that the accuracy of fault diagnosis of the proposed method reaches more than 95% after transfer learning. It is proved that the method can effectively improve the accuracy of bearing fault diagnosis and provide an effective diagnostic tool for realizing the self-diagnosis function of intelligent bearings. Different from other papers that use a single method to improve the network or migrate only to the same domain for small-sample problems, this paper uses parameters such as Dropout and L2 regularization and mean square error to improve the network, and conducts cross-domain experiments on the source domain in the transfer of small-sample problems, and the final training accuracy rate is significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼儿完成签到,获得积分10
刚刚
刚刚
yyyy完成签到,获得积分10
1秒前
马东完成签到,获得积分10
1秒前
成森完成签到,获得积分10
1秒前
爱吃大米发布了新的文献求助10
2秒前
2秒前
秋秋糖xte发布了新的文献求助10
3秒前
zyshao完成签到,获得积分10
3秒前
Lynn完成签到,获得积分10
3秒前
liuchao完成签到,获得积分10
3秒前
大模型应助焓晓芈采纳,获得10
4秒前
xyzdmmm完成签到,获得积分10
4秒前
Haibara5发布了新的文献求助10
5秒前
5秒前
凤迎雪飘完成签到,获得积分10
6秒前
叶子完成签到,获得积分10
6秒前
平淡的初翠完成签到 ,获得积分10
6秒前
甜甜穆完成签到,获得积分10
6秒前
豪的花花完成签到,获得积分10
8秒前
帅气的亦绿完成签到,获得积分10
8秒前
koutianle完成签到 ,获得积分10
9秒前
yan完成签到,获得积分10
10秒前
非对称转录完成签到,获得积分0
10秒前
SYSUer发布了新的文献求助10
10秒前
10秒前
plumcute完成签到,获得积分10
11秒前
wure10完成签到 ,获得积分10
11秒前
生活不是电影完成签到,获得积分10
12秒前
想人陪的飞薇完成签到 ,获得积分10
13秒前
七七发布了新的文献求助10
15秒前
爱听歌凤灵完成签到,获得积分10
16秒前
16秒前
所所应助坚强的安柏采纳,获得10
16秒前
panfan完成签到,获得积分10
16秒前
16秒前
Abi完成签到,获得积分10
17秒前
DijiaXu完成签到,获得积分10
17秒前
清脆的靖仇应助1111采纳,获得10
18秒前
忐忑的邑完成签到,获得积分10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968593
求助须知:如何正确求助?哪些是违规求助? 3513416
关于积分的说明 11167791
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794507
邀请新用户注册赠送积分活动 875170
科研通“疑难数据库(出版商)”最低求助积分说明 804671